Chapter 30

Solutions to Quizes & Exercises

Do the quizzes and exercises by yourself. When you get stuck, take a peak here.

Chapter 0

Numbers and Sets.

N O Ut W N

L2562 =2x2x3x3xT.

. minimum is 3.

. union = {1,3,7,8,9,10, 19}; intersection = {3, 10}.

. Yes, there must be a minimum element and the minimum is at most 18.

. 5 (integer, rational, real); 3 (rational, real); 7 (real).

. 3k, 3k+3.

. (i) In base 3, 3% + 2 x 32 + 3' + 2% 3° = 50. (ii) In base 4, 4°> + 2 x 4> + 4' + 4% 4° = 102.

Logarithms and Exponentials.

Gri oo =

In(12) = ln(2 x 2 x 3) =1n(2) + In(2) + In(3) =~ 2.484.
220 = (21%)% ~ 1000% = 10°.
InIx2x3x:--x10)=(Inl+mn2+n3+---+1n1l0).
How are 27/2° = 2°7%, 29 =1,

By definition of log,,, 100 = 10'°510 %, Taking log, of both sides, log, 100 = log, (10810 1%%) = log,, 100 x log, 10.

More generally, = 3'°58 *; taking log,, of both sides, log, = = logg x x log,, .

Sums and Products.

L. (a) 14---+41000 = 5 x 1000 x 1001 = 500,500.  (b) 1+---+n=3n(n+1). (c)l+3+=ZH+=xH+ =1 =g
2.51=20;nl =nx (n—1) X (n=2) x -~ x2x 1;0l = 1. !
3. 309 2;00{) k= L % 1000 x 1001 — 500 500. w04 = 1000 X i. st = 2 4i =11
4, 14+243+- +k—2 L i=sk(k+1). S k=3n(n+1).
5. 38 In(i) = In(k!); [, i=Fk.
Algebra.
1. (14+42)2=3%=9. Also, (1+2)? —12—|—2>< 1x2+22=09.
2. (a+0b)? =a®+2ab+ b% (a+b)® =a® + 3a°b + 3ab® + V*; (a + b)* ;éa + 4a®b + 4a2b* + 4ab® + bt
3. 22 —b5x — 6 = (x — 6)(z + 1) = 0, therefore the roots are z = 6 and = = —1
4. To get solutions to e** — 5e¢” — 6 = 0, set y = €”; then y* — 5y — 6 = 0 and (from the previous problem) y = ¢ = 6
ory=e”=—1. So, x = In6 or z = iw where i = v/—1. Other solutions are obtained by adding 2k7i, k € Z.
5. m—|—y—2and 2:r—|—3y—71mphesx——1 andy—?)
6. ;5@:16 =5 - z+2 and gigis) = z+3 + (z+3)2
Calculus.
1. 142422428424 4... diverges
I+2+GP+G>P+3) + - converges to 2
1-1+1-141-141-1+4--- diverges
I+3+3+3+-- diverges
1-— % + % — i + % — é + - converges to approx. 0.6931
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30. SoruTioNs TO QUIZES & EXERCISES

Derivatives: 3z?; 2¢2%; 2°1In2; —1/2?; —2/23; 1/x; 1/2In2; 1/2.
Integrals: z*/4; €**/2; 2°/1n2; In|z|; —1/x.
N LoeT—1 =0 1, et —1 z—=0 . e -1 =—0 . et —1 =0 o e—1 =0 1
Limits as ¢ — 0: Sin(22) 5 T 0; sy 7 0% Tz 1; S 7 5
. . e¥—1 T ef—1 T—Q 1, e T
Limits as ¢ — 00 55— 0; 5 73er 7 3% = — 0

f@) = sam =5+ 5@ -3+ @) + e -5+

Using the substitution « = arctan(z), du = dz/(1 + 2*) and so fOT dx ﬁ = arctan(T").

For f(t) = fot dz sin(l + z%e”), £ f(t) = sin(1 + t%€").

Pop Quiz 0.1. A powerful tactic when a problem looks hard is to make it easier. Suppose the letters lined up
vertically. That’s trivial. Now morph this simple problem into the one we want.

Easier problem Modify: move A Modify: move C Solution.

® — O — @ —@
N — | N —

@ N> ot W

Do not underestimate the power of simplification, the technique of making a problem easier: tinker. It helps to
understand a problem, build confidence (by solving something) and can pinpoint the difficulty in the harder problem.

Chapter 1

Pop Quiz 1.1. The red square is safe. The final infection is on the right. ﬁ
Exercise 1.2. Six infections won’t infect the whole grid; seven is the minimum.

Exercise 1.3. (1995 Russian Mathematics Olympiad) The title serves as a hint. Tinker! No matter what heavy lifting
you do when you end in the start configuration the total payment is 0. In such problems, it can help to find something
that does not change, an invariant. Suppose a box has n stones. The revenue the box can generate by repeatedly
removing coins is (n — 1) + (n —2) 4+ --- + 2+ 1. Yes, there is a cost related to which box the coins will go, but for
the moment we look only at the revenue. We won’t need to compute this sum. We only need to observe that it is a
function R(n), which depends only on n. If a stone leaves a box with n stones, the potential revenue drops by n — 1.
Similarly, if a stone enters a box with n stones, its potential revenue increases by n. Let the boxes contain a, b and c.
Let us compute the change in potential revenue if you move a stone from a to b.

R(a) + R(b) + R(c) = R(a) — (a — 1) + R(b) + b+ R(c) = R(a) + R(b) + R(c) +b—a + 1.
The payment for this move is a — 1 — b, which exactly offsets the change in the total revenue. We often use A to
indicate change. Let R1, R2, R3 be the revenue potential of the three boxes, and W your wealth. Then, in any move,
A(Ri+R2+R3+W)=0

The start and end configuration are the same, so R1 + Rz + Rs is unchanged. Hence your wealth must stay 0.

Chapter 2

Pop Quiz 2.1. O={n|n=2k—-1; k€ N}

Exercise 2.2. True because {pigs that fly} is empty, hence it is a subset of {things which are green with purple spots}.
Pop Quiz 2.3. M NV = {a,i}; MUV = {m,a,e,i k,l,o0,u}. With U ={a,b,...,2z}, M = {b,c,...,h,j,n,0,...,2}.
Exercise 2.4. (a) Drawings look different. (b) Friendships are the same, so it can be the same network.

Pop Quiz 2.5. A graph. The people on the grid are linked if they are neighbors. The EBOLA spreads along links.
Exercise 2.6.(a) {-1,-2,...} ={n|n=—k; k€ N} ) {1, L .  3={r|r=2% neN}

Chapter 3

Pop Quiz 3.1.
(a) Tough to verify. Ask A for a soul mate and check if B, ..., F have that same soul mate. If not, ask A for another
and repeat. Either A runs out of soul mates, or you verify the claim. (Assumes A has a finitely many soul mates.)

(b) Every American has their own dream, or there’s one “American dream” for everyone (house, 2 cars, 3 kids,...).
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30. SoruTioNs TO QUIZES & EXERCISES

Exercise 3.2. (a) F. (b) Don’t know yet. (c) Who is Kilam? (d) T.
Exercise 3.3. p Ar: It is raining and it is cloudy (F; it can be cloudy without rain).

p — ¢: If it is raining then Kilam has his umbrella (T; Kilam is a smart guy).

p — r: If it is raining then it is cloudy (T; you need clouds for rain).

g — r: If Kilam has his umbrella then it is cloudy (T; why does Kilam have an umbrella?).

g — p: If Kilam has his umbrella then it is raining (F as it could just be cloudy).

r — p: If it is cloudy then it is raining (F it can be cloudy without rain).

Exercise 3.4.

(a) T; (i) Yes, it is cloudy. (ii) No, it is clear.

(b)
(c)
(d)
Pop Quiz 3.5. In C™", || is OR, and && is AND. To show that both codes execute the instructions for the same z,y
values, define the propositions p: > 0,¢: y>landr: =z <y.

The left code tests p V (¢ A 1) before executing the instructions, and the right tests
pV q. We show their truth-tables (right). The highlighted row 3 is a problem. The
truth values are different. Let’s examine closer: pis F, x < 0; ¢ is T, y > 1; and, r is
F, x > y. This row in the truth-table is impossible: x < 0 and y > 1 implies x < y, so
r is T. To compare compound propositions, you only need to consider all the possible
truth values of the basic propositions. If the basic propositions are independent all 8
possibilities are relevant: pV (¢ A r) is not equivalent to p V g in general. In our case,
P, q,r being F,T,F is not possible: our basic propositions are not independent because
the truth value of r is constrained by the truth values of p and gq.

i) We don’t know if it is raining.

F; (1)
T; (i) Yes. (ii) Don’t know; you could just be smart. (iii) Don’t know. (iv) No.
T; (i) Yes. (ii) Don’t know; you could just be wandering. (iii) Not hungry; not thirsty.

=

pV(gAr) (pVaq)

O N ootk W
R I S
H 9 m T 343 3 oT|e
4 =3 3 =3 94 = 3 97
HH 8389 E T
=== = R N

For all possible truth values of p, q,r, the compound propositions match, so the two snipets perform identical compu-
tations. The right snipet is simpler, uses fewer operations and requires fewer gates (important in some applications).

eqv

Exercise 3.6. -p — qeg —q — pegp Vg ~(pVq) = —pA—q

e

eqv eqv qv
(@A-1) = =p=(-pV-q) VI =(pAg) 7 pV(gVr)=-r—(pVaq)
Pop Quiz 3.7. (a) n € N. (b) A predicate cannot be T or F. (c) “4 is a perfect square.” (d) P(4) and P(9) are T.
Exercise 3.8.
(a) P(x)="“z has grey hair”. P(Kilam).
b

(b) P(z) =“Map z can be colored with 4 colors with adjacent countries having different colors”. Vz : P(z).
(c) P(n)=“Integer n is a sum of two primes.”. Vn € E : P(n) (E is set of even natural numbers).
(d) P(z) =“x has blue eyes and blond hair”. =3z : P(x). Another way to formulate the statement with predicates is:

P(z) =“z has blue eyes;” Q(x) = “z has blonde hair.” =3z : P(x) A Q(x).

Exercise 3.9.
(3a: G(a)) A (Ja : H(a)): someone has blue eyes and someone has blonde hair.
(3b: G(b)) A (3c: H(c)): someone has blue eyes and someone has blonde hair. A quantified statement does not change
when you change the name of a (variable) parameter.
(Ja : G(a)) A H(c): “someone has blue eyes and ¢ has blond hair.” (A predicate, not a statement.) To make it a
statement, specify a value for c.
Exercise 3.10.
(a) (i) Ya: (Vb: P(a,b)): Every person a has every person b as soul mate.

Vb : (Va : P(a,b)): Every person b is soul mate to every person a. (Both are equivalent)

(ii) Ja: (3b: P(a,b)): Some person has a soul mate.
3b: (3a: P(a,b)): Some person is soul mate to someone. (Both are equivalent)

(b) They are valid predicates. In English: Q(a) = 3b: P(a,b) = “Some person is soul mate to a”
R(b) =Va: P(a,b) =“All people have b as soul mate”
Rewriting using Q and R, (3.2) is 3b: (Va : P(a,b)) = 3b: R(b), and (3.3) is Va : (3b: P(a,b)) =Va : Q(a)

Exercise 3.10. Add a requirement that two people satisfying the soul mate condition must be equal,
Va: ((3b: P(a,b)) A (Vz,y : Pla,z) A P(a,y) = = =1y))

Exercise 3.12. Easier to disprove (a): find a single n for which 22" + 1 is not prime. To disprove (b), show that for
every choice of (a,b,c), a® 4+ b® # . Disproving a “there exists” is typically harder than disproving a “for all”.
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30. SoruTioNs TO QUIZES & EXERCISES

eqv

Similarly proving “for all” is harder than proving “there exists”. This is because =3z : P(z) = Vz : =P(z). So, showing

“there exists” is false means showing a “for all” is true. Similarly —Vz : P(z) = 3z : =P(x).

Chapter 4

Pop Quiz 4.1.
(a) p:nis greater than 2 and even q : n is the sum of two primes
(b) p:x and y are rational q : = + y is rational

() p:ar®+bx+c=0anda#0 q:z=(=b+Vb>—4ac)/2a or x = (=b — Vb? — 4ac)/2a
Exercise 4.2.
(a) Proof. We use a direct proof.
1: Assume that a is divisible by b and b is divisible by c.
2: This means there are integers k, £ for which a = kb and b = Zc.
3: Then, a = kb = kfc = mc, where m = k£.
4: Since m = k/ is an integer, a is divisible by ¢, as was to be shown. n
(b) A proof does not have to be written in algorithmic steps.
Proof. Let x and y be arbitrary real numbers. First observe that +z < |z| and +y < |y|. There are two cases:
(i) z +y > 0, in which case |z +y| =z +y < |z| + |y| (because z < |z| and y < |y|). (ii) z + y < 0, in which case
lz+yl=—(x+y)=—z—y <|z|+ |y| (because —z < |z| and —y < |y|). In both cases |z + y| < |z| + |y|. "
(¢) Proof. Consider any four consecutive integers z,x + 1,z + 2,z + 3. One of these four must be divisible by 4,
and so equals 4k. Among the remaining numbers, two are consecutive so one is divisible by 2 and so equals 2/.
Therefore the product of all four numbers is 4k x 2¢ x (integer), a multiple of 8. u
The proof is subtle. We ask the reader to prove by cases. Let r be the remainder when x is divided by 4, x = 4k+7r
where r € {0,1,2,3}. Show that in each of the four cases for r, the product is divisible by 8. For example, if
x = 4k the product is 4k(4k + 1)(4k + 2)(4k + 3) = 8k(4k + 1)(2k + 1)(4k + 3).
Pop Quiz 4.3. You need to find one n* € D for which Q(n*) is F. Equivalent to disproving: 1F n € D, THEN Q(n).
Exercise 4.4.
(a) The two truth-tables are identical. The only way p — ¢ is F is with p T and ¢ F. The only case =g — —p is F is
with —¢g T and —p F, i.e. with p T and q F.
(b) (i) IF the grass is not wet, THEN it did not rain last night.
(ii) 1F you do not stay at home, THEN the mall is not crowded.
(¢) (i) Contrapositive IF < 10 and y < 10, THEN one of z,y is not positive or zy < 100.
Proof. (By contrposition) Suppose < 10 and y < 10 (the consequent is false). There are two cases.
Case 1: One of z,y is not positive in which case the antecendent p is F.
Case 2: Both x,y are positive, so 0 < x,y < 10. In this case zy < 10 x 10 = 100 and the antecedent pis F. =
(ii) Contrapositive: IF /7 is rational THEN r is rational.
Proof. (By contraposition) Suppose 4/r is rational (the consequent is false). Then /7 = a/b for integer a
and natural number b. This means r = a®/b? which is rational because a? is an integer and b? is a natural
number. Hence the antecedent is false. n
Pop Quiz 4.5. The truth-tables are the same: p > qeg(p — q) A (g — p) (logically equivalent).
Exercise 4.6.
(a) /
(b) (a) Two line segments (in 3-dimensions) are parallel if and only if they both lie in the same plane and when both
are extended to infinity in both directions, there is no point of intersection.
(b) A triangle is isosceles if and only if at least two sides have the same length.

(Do not intersect, but not parallel according to the valid definition.)

Exercise 4.7.

(a) To get a contradiction, suppose there are m,n € Z with 21m + 9n = 3(7m + 3n) = 1. 3 divides the LHS, therefore
3 divides 1. FISHY'! This contradiction proves the claim.

(b) Suppose x,y > 0 and = +y < 2,/zy. Both sides of the inequality are positive. Squaring, (z + y)? < 4day, or
z? + 2zy + y* < 4y, or 22 — 2y +y? < 0 or (z —y)? < 0. This is FISHY because the square of a real numnber
cannot be negative. This contradiction proves the claim. n

(c) Suppose that m and n are both odd, m = 2k + 1 and n = 20 4+ 1. m? +n? = 4k* + 4k + 1+ 40> + 4¢ + 1. Since
m? 4+ n? is divisible by 4, m? + n? = 4s, therefore 4s = 4(k* + k+ > +4) +2, or 4(s —k* =k — (> =) = 2 or
2(s — k* — k — £* — £) = 1. This means 1 is divisible by 2, FISHY. This contradiction proves the claim. "
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Exercise 4.8.
(a) Direct proof because the result clearly follows from the assumption that z is real.
(b) Contraposition, for if n is even (not odd), then it is easy to show by algebra that n? is odd.
(c) Direct proof because by simple algebra if n is odd one can square and show n? is even.
(d) Show an example of a number that is not a square and prove it.
(e) Direct proof because, by simple algebra, a product of two ratios is a ratio.
) Direct proof. By simple algebra one can show that a product of two odd numbers is odd.
) Contradiction. This gives something to start with by assuming v/6 = p/q. Now find any contradiction.
) When the path is unclear try contradiction, because it gives you something to work with.
Proof. Let z1,...,z, be arbitrary numbers and let 4 = (214 - -+, )/n be the average, so that x1+- -+ z, = npu.
Now assume that every z; < p (to obtain a contradiction). Then z1 + -+ zn < p+ -+ p = nu. This is a
contradiction. Therefore, not every x; < u, so at least one number is as large (or larger) than the average p. n
Commit this important fact to memory. Some number is as large as the average. What larger than the average?
Pop Quiz 4.9. We prove x € AN B — x € C by direct proof. Assume z € AN B. Then z € A and = € B, so x is
even and = = 9k. If k is odd, then z is the product of two odd numbers which is odd. Therefore, k is even (to make z
even). So, k = 2n, which means x = 18n = 6 - (3n), a multiple of 6. Therefore, x € C, which concludes the proof.
Exercise 4.10.
) (ANB)U(ANC) Aﬂ(BUC)

& & " &~ & ®

ANC AN(BUCQC)
(AOB) (AOC’)
Suppose z € (ANB)U (ANC). Then either x € A and x € Bor x € A and ¢ € C. In both cases, z € A and
z€BUCsox e AN(BUC). Now suppose z € AN (BUC). Then z € A and either z € Borz € C. If x € B,
then z € (ANB) and so z € (ANB)U(ANC). Similarly, if z € C, then z € (ANC) andsoz € (ANB)U(ANC).

(b) AUB=ANB:
umon 1ntersect
‘) complement C‘
A B
A B
SupposexGAUPThismeansmGAORJ:EB. r€A—2¢gA—vzgdANBsxcANB;zx€cB—x¢B—

AUB,AnB

& ANB — x € AN B. In both cases, z € AN B.

Now, suppose € ANDB, that is x ¢ ANB. Soecitherz ¢ Aorx ¢ B. 1 ¢ A >z € A — 2 € AUB;

r¢B—>xe€B—xe AUB. In both cases, z € AU B.
Exercise 4.11. We must prove a set equality, which is an if and only if.
First, suppose € f~'(C U D). Then, f(z) = CUD. If f(z) € C, then € f~'(C); otherwise f(z) € D and
x € f~Y(D). In either case, z € f~*(C)U f~ (D).
Second, suppose z € f~H(C)U f~H(D). If z € f~1(C), then f(z) € C — f(z) € C U D, which means z € f~*(C U D).
Otherwise x € f~(D) and f(x) € D — f(x) € C'U D which means = € f~'(C U D). In either case, x € f~'(C U D).
We have proved = € f~'(CUD) < x € f~(C)U f~1(D), which proves the set equality. .

(

a
b
C
d
e
f
(g
(h

Chapter 5

Pop Quiz 5.1. Yes. When could a boy have entered the line? If the first boy is at position £ > 1, then at k — 1 is a
girl. But behind that girl must be a girl, not a boy.

Exercise 5.2.

(a) S(n) is a sum of integers so it is an integer, call it k.

(b) By the high-school geometric sum formula: 14+4+4% + ... +4""1 = (4" —1)/(4 — 1) = (4" — 1)/3.

(c) Therefore k = (4™ —1)/3, or 4" — 1 = 3k. That is, 4™ — 1 is divisible by 3

Exercise 5.3. (a)n>2(b)n>0(c)n=0,1(d)n>1(e)n>1

Exercise 5.4.

(a) Define the claim P(n): X" a + id = na + in(n —1)d.

=1
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1: [Base case] P(1) claims that a = a, which is clearly T.

2: [Induction step] We show P(n) — P(n+ 1) for all n > 1, using a direct proof.
Assume (induction hypothesis) P(n) is T: 3.7~ 'a+id = na + in(n —1)d.
Show P(n+1) is : 30" a+id = (n+ 1)a+ i(n+1)(n)d.

We compute the sum )" | a + id as follows:
n n—1

Sat+id=a+nd+ 3, a+id

i=1 =1
= a+nd+na+ in(n—1)d
=(n+1)a+i(n(n—1)+2n)d = (n+1)a+ 3(n+1)nd
(IH stands for “by the induction hypothesis”). We have shown P(n + 1) is T, as needed.
3: By induction, P(n) is T Vn > 1.
(b) Define the claim P(n) : 30" ar' = a(r™ — 1)/(r — 1).
1: [Base case] P(1) claims that a = a, which is clearly T.
2: [Induction step] We show P(n) — P(n + 1) for all n > 1, using a direct proof.
Assume (induction hypothesis) P(n) is T: 3" ar' = a(r™ —1)/(r — 1).
Show P(n+1) is 7: 30" ar' =a(r"t = 1)/(r — 1).
We compute the sum > ar’ as follows:
n—1

; art 2 gpn 4 2D Gl ¥l R a(r**t —1)/(r = 1).

r—1 r—1

1= =1

We have shown that P(n + 1) is T, as needed.

3: By induction, P(n) is T Vn > 1.

(¢) Define the claim P(n):n < 2.

1: [Base case] P(1) claims that 1 < 2', which is clearly T.

2: [Induction step] We show P(n) — P(n+ 1) for all n > 1, using a direct proof.
Assume (induction hypothesis) P(n) is T: n < 2.
Show P(n+1) is T: n 41 < 2",

S art = ar™ 4 nd +
=1

n+1<2"+1 < 242" = 2"t
We have shown that P(n + 1) is T, as needed.
3: By induction, P(n) is T Vn > 1.
(d) Define the claim P(n) : 5" — 1 is divisible by 4.
1: [Base case] P(1) claims that 5 — 1, is divisible by 4, which is clearly T.
2: [Induction step] We show P(n) — P(n+ 1) for all n > 1, using a direct proof.
Assume (induction hypothesis) P(n) is T: 5" — 1 is divisible by 4, so 5" — 1 = 4k.
Show P(n +1) is T: 5™ — 1 is divisible by 4.
5 —1=5.5"-1 2 5.(4k+1)—1 = 20k+4 = 4(5k+1).
Therefore 5" — 1 is divisible by 4, and we have shown that P(n + 1) is T.
3: By induction, P(n) is T Vn > 1.
(e) Define the claim P(n): > ¢  i-il=(n+1)! - 1.
1: [Base case] P(1) claims that 1 = 2! — 1, which is clearly T.
2: [Induction step] We show P(n) — P(n+ 1) for all n > 1, using a direct proof.
Assume (induction hypothesis) P(n) is T: Y . 4-il = (n+1)! — 1.

Show P(n+1) is T: ' i il = (n+2)! — 1. We compute 31" i - 4! as follows:

i=1 )

n+41 n
Sicil=(m+D)m+ D)+ X34
i=1 i=1

= (n+ D)+ +nm+1) -1
=Mm+D(n+14+1)—-1 = (n+2)!-1.
We have shown that P(n + 1) is T, as needed.

3: By induction, P(n) is T VYn > 1.

Pop Quiz 5.5. The claim is readily verified by substituting ao, a1, a2, a3 into the four equations.

Exercise 5.6.
(a) Tinker. Compute S(n) for small n: n 1 2 3 4 5 6 7 8 9 10
S(n) 1 4 9 16 25 36 49 64 81 100
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A reasonable guess is S(n) = n?. The proof by induction follows the standard template. For the base case,

S(1) = 1 = 1. Suppose S(n) = n* and consider
Sn+1)=Sn)+2n+1Zn° +2n+ 1= (n+1)°
(11 stands for “by the induction hypothesis”). By induction, S(n) = n? for all n > 1.

(b) As usual, first tinker with small n: n 1 2 3 4 5 6
S(n) 19 36 100 225 441
il 13 6 10 15 21

A reasonable guess is S(n) = (3., i)%. The proof by induction follows the standard template. For the base case,

S(1) =1 =1°. Suppose S(n) = (3.7, 4)* and consider

S(n+1) = S(n) + (n+1)*2(2 ) + (n+1)* = Ln2(n+ 1) + (n+ 1)%,

i=1

where the last step follows from the formula >, i = in(n + 1). Therefore,
S(n)=3i(n+1)>*n°+4(n+1)) =i(n+1)>*(n+2)>%

The last expression is (37" i)2. By induction, S(n) = (31, i)? for all n > 1.

Pop Quiz 5.7. (a) n >3 (b)n=3,4 (c)n>1

Exercise 5.8.The base cases n = 1 and n = 2 are demonstrated in the exercise. Assume the 2" 2"

2™ x 2" grid missing the top-left square can be L-tiled. We show a 2"+ x 2% grid missing

its top-left square. We divided the grid into four 2" x 2™ grids and placed an L-tile to cover 2"

three of the center-squares as shown in the figure. Each 2" x 2" sub-grid is now missing a ‘
corner-square, which can be treated as the top-left square by rotating your view. By the
induction hypothesis, each sub-grid can be L-tiled independently. So, the 2" x 2"+ grid
missing the top-left square can be L-tiled, proving the claim for n + 1. By induction, the
claim holds for all n > 1.

Exercise 5.9.

2n

(i) Define C = {x 4 z0 | x € B}. Then C contains only natural numbers, and is non-empty because B is non-empty.
By well-ordering C has a minimum element ¢, = b, + zo where b, € B. Consider any b € B. Then c=b+ 20 € C

and therefore c. < ¢, i.e. bx + 20 < b+ 20 or by < b. This proves that b, is a minimum element of B.

(i) (a) Let n. be the smallest counter-example; n. > 2 (P(1) is T). Therefore 37" a +id # n.a + 3n.(n. — 1)d;

and, because n. is the smallest counter-example, 372 a + id = (n. — 1)a + 1(ns — 1)(n. — 2)d. But,

i=0
nye—1 Ny —2
> at+id =a+ (n.—1)d+ > a+id
i=0 =0

=a+ (n. — 1)d+ (n. — Da+ 2(n. — 1)(n. — 2)d
= n.a+ 3n.(n. — 1)d,

which contradicts n. being a counter-example. So, there is no counter-example.

(b) Let n. be the smallest counter-example; n. > 2 (P(1) is T). Therefore 37" ar® # a(r™ —1)/(r — 1); and,

n. —1 > 1 is not a counter-example, so Z?:*o_z ar’ = a(r™~' —1)/(r — 1). But,
ny—1 Ny —2 Ny —1 (oM
S i oma—1 3 i me—1, a(r -1) _ a(r"™ —1)
igoar = ar +Z;)ar = ar + —] = T

which contradicts n. being a counter-example. So, there is no counter-example.

(c) Let n. be the smallest counter-example: n. > 2 (P(1) is T) and n. > 2™*. Also, n. — 1 is not a counter-

example (n. is the smallest counter-example), so n, — 1 < 2™~1 But,
Ne=mn,—1+1<2" 141 <2 pomt =9

which contradicts n. being a counter-example. So, there is no counter-example.

(d) Let n. be the smallest counter-example: n, > 2 (P(1) is T) and 5" — 1 is not divisible by 4. Also, n. —

not a counter-example (n. is the smallest), so 5™ "' — 1 = 4k. But,
5" —1=5-5""1—1=>5(4k+1)—1=4(5k+1),
so 4 divides 5"* — 1 contradicting n. being a counter-example. So, n. does not exist.

1lis

(e) Let n. be the smallest counter-example; n. > 2 (P(1) is T). Therefore > 7% .4l # (n. + 1)! — 1. Since n. is

the smallest counter-example, E?:*fl i %1l = ni! — 1. But,

Ty nye—1
Sridl = nend+ Y ixil = nend + 0l =1 = (ne+ 1) =1,

=1 =1
which contradicts n. being a counter-example. So, there is no counter-example.
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Exercise 5.10. Suppose P(1) is T; and, P(n) — P(n+ 1) is T for n > 1. We show P(n) is T for all n > 1. Assume
P(n) is F for some n, and let n. be the smallest counter-example; n. > 2 because P(1) is T. Therefore n. — 1 is not a
counter-example (n is the smallest), so P(n. — 1) is T. But, P(n. —1) — P(n.), since n. —1 > 1 and since P(n. —1)
is T, it implies that P(n.) is T. This contradicts n. being a counter example, so P(n) is T for all n > 1. "

Chapter 6

Pop Quiz 6.1. Assume 2,/n + ﬁ > 2y/n + 1. Multiply by v/n + 1 and rearrange to 2/n(n + 1) > 2n + 1. Both
sides are positive, so squaring gives 4n* + 4n > 4n®> +4n + 1, or 0 > 1, a contradiction. So, 2¢/n + \/%4-1 >2yn+1nm
Exercise 6.2.

(a) Define the claim P(n) : n® < 2". Let us consider the induction step, so assume that P(n) is T and consider
n+1)3* =n*+3n2 +3n+1 < 2" +3n> +3n+ 1. P(n+1) will follow if 3n? + 3n 4+ 1 < 2", so define
Q(n) : 3n®> +3n + 1 < 2". Let us consider the induction step for Q: assume Q(n), i.e. 3n? +3n +1 < 2" and
consider Q(n+1). 3(n+1)?>+3(n+1)+1=3n>4+3n+14+6n+6 < 2" +6n+6. Q(n+1) will be T if 6n+6 < 2".
Let us define the claim R(n) : 6n + 6 < 2". Let us prove the stronger claim P(n) A Q(n) A R(n) for n > 10.

For the base case, the reader can verify that P(10), Q(10), R(10) are all T. For the induction step, assume
P(n)AQ(n)AR(n) forn > 10,s0n® < 2" A3n? +3n+1 < 2"Abn+6 < 2. We prove P(n+1)AQ(n+1)AR(n+1).
3 3 2 1H n n n+1
n+1°=n"4+3n"4+3n+1<2"+2" =2
1H
3n+1)2+3n+1)+1 =30 +3n+1+6n+6 < 2" +2"=2""!
6(n+1)+6 = 6n+6+1< 2" +6< 2" +2" = 27+,
The 1st equation uses P(n) for n® and Q(n) for 3n*+3n+1. The 2nd equation uses Q(n) for 3n?+3n+1 and R(n)
for 6n46. The 3rd equation uses R(n) for 6n+6 and 6 < 2" when n > 10. Therefore P(n+1)AQ(n+1)AR(n+1)
is T. By induction P(n) A Q(n) A R(n) is T for n > 10. .
(b) Without strengthening the claim, in the induction step for n? < 2", we have
n+1)?=n*+2n+1<n*+2n+n=n*+3n<n’4+n-n=2n°
The first inequality is because 1 < n and the second because 3 < n. The rest of the induction step continues as
before. The induction step works as long as n > 3. However, the base case only works for n = 4.
In the induction step for n® < 2", we have
(nJrl)3 =n® 4302 +3n+1<n®+3n% +4n <n® + 4% <n®+n® =20
The first inequality is because 1 < n, hence 3n+1 < 4n; the second is because 4 < n, hence 3n+4n < 3n?+n? = 4n?;
the third is because 4 < n, hence 4n? <= n -n? = n®. The rest of the induction step continues as before. The
induction step works as long as n > 4. However, the base case only works for n = 10.
In the text, we strengthened the claim even though the original claim is provable with a little creativity for
pedagogical reasons, to highlight this peculiarity with induction that proving stronger things can be easier. But
we are not highilighting for highlighting’s sake. In many cases (e.g. next problem) the original claim cannot be
proved by induction and the only way to go is by strengthening the claim.
(c) The base case, n = 1, is easy to check. For the induction step, assume 1 + 2% 4+ 4 n% < 2 and consider n + 1:
Lt g+ o+ o+ rpr S 2+ Gz
But now what? The RHS is greater than 2 and the induction step fails with no possibility of ressurection. Let us

instead prove the stronger claim 1 + 2% + 3% 4+ 4+ % <2- % Again, the base case for n = 1 is easy to check.
For the induction step, assume 1 + 2% + 3% 4+ 4 7712 <2-— % and consider n + 1:

1 1 1 1 1 _ 1 1 1 1 _ 1 1
ettty 2 ntmye =2 tem —a P o2 =27 50 ~ a0

(Verify the last step using algebra.) The last expression is clearly less than 2 — proving the induction step. m

1
n+1’
Pop Quiz 6.3. No because each subgrid has 4" squares, which is not a multiple of 3 (the number of squares in an
L-tile). This is so because we know that 4™ — 1 is divisible by 3, so 4™ can’t be.

Exercise 6.4. We prove a stronger claim by induction, P(n) : the 2" x 2" grid can be L-tiled for any missing square.
The base case is the 2 x 2 square. For the induction step, assume P(n), so the 2™ x 2™ grid can be L-tiled for any missing
square. For P(n + 1), consider the 2" x 2"™! grid with any square missing. Divide the grid into its 4 sub-squares as
in the text. Place an L-tile in the center overlapping with the 3 sub-grids that are empty. You now have four 2" x 2"
sub-grids, each with a square missing somewhere; three of them have a corner square missing and one has a square
missing in some arbitrary position. By the induction hypothesis, each sub-grids can be independently L-tiled, which is
an L-tiling of the whole 2"! x 2"*! grid, proving P(n + 1). By induction, P(n) is true for n > 1. "
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Pop Quiz 6.5.
(2) /.<:x\>(/: ~~ g ~~ g ~ —
P| [P@]| [PB)| PO PG PE) PO PE) PO POD) POT) P(12)

(b) There are three sets of arrows: black (starts at 1); gray (starts at 2); and, light gray (starts at 3). To touch every
n with a chain of implications from a base case, we need the three boxed bases cases P(1), P(2), P(3).

Exercise 6.6.
(a) (l) A < Y g /\
P(1) P(2) P@B) P@A4) P(B) P6) P(1)y P@B PO P(10) P(11) P(12)
A chain starts at every odd n (we have shown the chains starting at 1, 3,5).
(ii) There is no in-arrow into odd n, so you need infinitely many base cases 1,3,5,7,9,11,....

(b) (1)
P(1) P(2) P(3) P(4) P(5) P(6) P(7) P(8) P(9) P(10) P(11) P(12)
Now, there is an incoming arrow to every n from |n/2|.
(ii) Since there is an incoming arrow to every n, you only need the base case P(1).

Exercise 6.7.
(a) 21 =2' +22 4 2%
(b) Define P(n) : n is a sum of distinct powers of 2. The base case is P(1) and 1 = 2°. We use strong induction.
Assume P(1),...,P(n), and consider P(n + 1). There are two cases.
Case 1: Even n. Since P(n)is T, n =3_,., a;2", where a; = 0,1. Hence, n+1 = 2"+ i1 a;2" proving P(n+1).
Case 2: Odd n, so n+ 1 is even, and 1 < 1(n+1) < n. Since P(3(n+1))is T, 3(n+1) = D s a;2¢, where
ai =0,1. Therefore n+1=3",., a;2""", proving P(n +1).
In both cases, we proved P(n +1), and so, by induction, P(n) is T for n > 1. n
(c) Define P(n) :n = >0, aiil, where a; € {0,1,...,i}. The base case is P(1) and 1 = 1!. We use strong induction.
Assume P(1),...,P(n), and consider P(n + 1).
Let n=3},., aiil. Let k be the ﬁrst index for which ar < k,son = Z il 4 agk! + > isky aitl. We claim that
n+1=(ar+ 1)kl + 32,5, aii!, which proves P(n + 1). To see this, there are two cases.
Case 1: k = 1, in which case the summation 3" i is empty (i.e. zero) and a; = 0 (because a1 < 1), therefore we
are just addlng 1 to n, which clearly gives n + 1.
Case 2: k > 2. By Exercise 5.4(e), n = k! — 1 +apk! + 3,5, aid! = (ax + Dk =1+ >0 aidl.
Adding 1 to both sides, n +1 = (ar + 1)kl + 32,5, aidl, proving P(n +1). By induction P(n)isTforn>1. =
Exercise 6.8.

(a) Define P(n) : the greedy algorithm uses the fewest coins for n. The base case P(1) is clearly T, since greedy uses
one 1¢ coin, the best possible. We use strong induction, so assume P(1),..., P(n) and consider P(n + 1).

Let n 4+ 1 > 25. Suppose that the optimal way to obtain n + 1 does not contain a quarter. It cannot contain 3
or more dimes, as you can replace 3 dimes with a quarter and a nickel and do better. We leave it to the reader
to show in a similar way that it cannot contain 2 dimes, 1 dime or zero dimes, which is impossible. Therefore,
optimal must contain a quarter; and then some number of coins for n + 1 — 25. Greedy uses a quarter and by the
induction hypothesis, the optimal number of coins for n + 1 — 25, which means greedy is optimal for n + 1.
Suppose 10 < n + 1 < 25. A similar reasoning shows there must be at least one dime, hence greedy is optimal. (If
there is no dime, there aren’t 2 nickels, or 1 nickel and at least 5 pennies, or no nickel and at least 10 pennies.)
Suppose 5 < n + 1 < 10. Using similar reasoning, there must be a nickel and greedy is therefore optimal. Lastly,
Greedy is clearly optimal for n +1 < 5.
Thus greedy is optimal for n + 1, and hence by induction, greedy is optimal for all n > 1. n
(b) Consider denominations {1¢,4¢,5¢}. To make 8¢, greedy uses {5¢,1¢,1¢,1¢}, but you only need two coins, {4¢,4¢}.

Pop Quiz 6.9.No. Only P(1), P(5) are T. You need base cases P(1), P(2), P(3),P(4). Then, P(1) — P(5); P(1) A
P(2) — P(6); P(1) AP(2) AP(3) = P(7); P(1) AP(2) AP(3) AP(4) — P(8); P(1) A--- AP(5) — P(9); ...

Chapter 7

Pop Quiz 7.1.f(3) cannot be computed. f(3) = f(2)+5=f(1)+3+5=f(0)+14+3+5=.... Since we don’t
know any of f(2), f(1), £(0), f(—=1),..., we cannot compute f(3).

Exercise 7.2. (a) f(-1) = f(0) = 0: /(1) = f(0) 4+ 1= 1: /(2) = f(1) 43 =4 /(3) = f() +5=0:  (b) f(n) =n’.
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Exercise 7.3. (a) and (b) are well defined. In (c), the recursive part uses a larger value farther from a base case. In
(d) you cannot compute f(1).

Exercise 7.4. P(0), P(1) are true since f(0), f(1) are given. Assume P(n), so f(n) can be computed. Then f(n+2) =
f(n) + 2, proving P(n + 2). Hence, P(n) — P(n + 2). By leaping induction, P(n) is T for n > 0. "
Exercise 7.5.
(a) f(n) =2n. (Base case) f(0) = 0. (Induction step) Assume f(n) = 2n; then, f(n+1) =2+ f(n) =2(n+1). "
(b) f(n)=0. (Base case) f(0) = 0. (Induction step) Assume f(n) = 0; then, f(n+1) =2f(n) =2 x 0=0. "
(c) f(n) =2". (Base case) f(0) = 1. (Induction step) Assume f(n) = 2"; then, f(n + 1) = 2f(n) =2 x 2" =2""!
Exercise 7.6. First we unfold the recursions in (a), (b), (¢); (d) is complicated.
(@) f(n)=fr—=T)+logyn () f(n) =2f(r—=T)] (@ f(n) =nfln—=T)
Hn =1 = £n—2] + logy(n — 1) H =TT =2£(n—2] Hr—=1T=(n
1n—2]= [(n—3] + logy(n — 2) Tn—2] = 21 (n—3] =27 = (n— 2)fln—3]

L= p o sar=2pey =2y
S = pA) +log,?2 ey =247 )= 1pe0)

+ f(n)=log,2+---+log,n X f(n)=2x---x2 X fn)=1x2x---xn
= log, n! =2on~! =nl!

In (a), the cancelations occur when you equate the sum of the LHS terms to that of the RHS terms. In (b) and (c),
the cancelations occur when you equate the products. Here are the proofs.
(a) f(n) = logyn!. (Base case) f(1) = 0 = log, 1!. (Induction step) Assume f(n) = log,n!; then, f(n + 1) =

f(n) +logy(n + 1) =logy n! + log,(n 4+ 1) = logy(n + 1)!. "
(b) f(n) =2""'. (Base case) f(1) =1 =2° = 2'~'. (Induction step) Assume f(n) = 2"7'; then, f(n +1) = 2f(n) =
2x 2"t =2r =il .
(¢) f(n) = nl. (Base case) f(0) = 1 = 0. (Induction step) Assume f(n) = n!; then, f(n+1) = (n+ 1)f(n) =
(n+1)xnl=(Mn+1) "
(d) It is possible to unfold the recursion, but one must be careful.
f(n) = fln—1)% Computing the formula was a little complicated, but the

M = (fn—2% proof by induction after you have the formula is standard.
W:W (Base case) f(1) =2 = 2" =92 — 927"

Induction step) Assume f(n) = 22"7" Then
( p ;

(£ = ((F(1)?)?))? fn+1) = f(n)
+ f) = ((F()?H?))? 92" 9
= (((2%)%))? _ g
2

on ont1-1
=2 . n

on—1 on—1

The cancelations are after you sum on the LHS and
RHS. So, f(n) is 2 squared n — 1 times. When you

square, you multiply the exponent by 2, so There’s an easier analysis of this recursion.
f(n) _ 21><2><2><~-><2 _ 22"*1
Transforming a recursion. We seize the chance to show a powerful trick for analyzing recursions: transform f(n) to
a function g(n) that’s easier to analyze. The recursion for f(n) transforms to one for g(n). We use the transformation
g(n) = log, f(n).
Note: g(1) = log, f(1) = 1. Taking logs of both sides of the recursion for f(n) gives
log, f(n) = log, f(n —1)* = 2log, f(n — 1).
We get a recursion for g(n) by replacing log, f with g, g(n) = 2g(n — 1). We analyzed this recursion in part (b),
g(n) =2""" and f(n) = 29(n) — 92" 71
Exercise 7.7. Ty = 1 = F(2) and T, = 2 = F3, so the base cases are true. We use strong induction. Suppose
Ty = Fs,..., Ty = Fpt1 for n > 2. By the recursion, Th41 = T, + Th—1 = Fny1 + Fh (by the induction hypothesis).
But by the Fibonacci recursion, F,11 + F,, = Fy42, hence Ty, 41 = F+2. By induction, T,, = Fy,+1 for n > 1.
Exercise 7.8. Two base cases because Fj,+1 needs F,, and F,_1. The induction starts at n = 12. To prove F, < 2"

with base cases F1 =1 < 2! and I, = 2 < 22, assume (induction hypothesis) F; < 2',...,F, < 2" for n > 2. Then,
Foiin=F,4+F, 1 <2" 42"t <om 49" = 9" 50 F, 1y < 2" By induction, F,, < 2" for n > 1.
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Exercise 7.9. We use induction. The base case is Big(0)=1 which is 2°. Suppose Big(n) = 2". Since n+ 1 > 0,
Big(n+1) = 2-Big(n) = 2-2" = 2""!. By induction, Big(n) = 2" for n > 1.

Exercise 7.10. Guess T, = 3n + 2. Now for the proof by induction. The base case is To = 2 = 3 x 0 + 2. Suppose
T, =3n+2. Then, Thy1 =Tn +3=3n+2+3=3(n+ 1)+ 2. By induction, T, = 3n + 2 for n > 1.

Pop Quiz 7.11. (a) Yes (b) Yes (c) No (2 —2) (d) Yes (e) No (1 is not in the set)

2 2

Exercise 7.12. Remember that in all cases, by default, nothing else is in the set.

D@ 1es. (i O 1es. b)) @ e0,1€8. @ ees.

@xGS%?)xES. @xGS%xQGS. @meSaOmOES; @m,yES%[x]yGS.
lzl € S.
Pop Quiz 7.13. T =
T, =
T EN AN A Ju:.
_—
Ty =¢ T =@ T

KL Ju:. K

Exercise 7.14.
(a) Every RFBT is an RBT. This is because the basis case for the RFBT is an RBT; and, the constructor rules are

the same. However, every RBT is not an RFBT. ./. is an RBT, but not an RFBT. /.\

(b) There are no RFBTs with 6 vertices (only an odd # of vertices is possible). 5 node RFBT: A ®

Chapter 8

Pop Quiz 8.1. ¢ =5~ [] =5 1y 0=

Exercise 8.2. The proof is by structural induction.

1:
2:

3:

Clearly ¢ is matched (base case).

For the induction step, there is only one constructor rule. Suppose z and y are matched. Then xy is matched and
so every prefix in [zy has at least one more “[” than “]”. Inserting “]” anywhere in [zy can add at most one to “]”’s
in some prefixes. Therefore, every prefix in [z]y has at least as many “[’ than “]” and so [z]y is matched.

By structural induction, every string in M is matched. n

Since ][ is not matched, |[¢ M.

Exercise 8.3.
(a) Suppose s is balanced and matched. We use “CS-notation” for the bits of s, s = s[0]s[1]s[2] - --. s[é] is the ith bit.

For prefix s[0] - - - s[i], define the excess function f(¢) to be the number of “[” minus the number of “]”. Since s is

matched, f(i) > 0; s must begin with “[” so f(0) =1 and s is balanced so f(n) =0 (length(s) = n+1). Let 4, be
the first prefix which is balanced, so f(ix) = 0 and i« < n and s[i.] =“]”. We have decomposed s as
s = [y,

where z = s[1] -+ - s[ix —1] and y = s[ix+1] - - - s[n] (z or y could be empty). We show that z and y are balanced and
matched. Since s[0] - - - s[i«] is balanced (f(i+) = 0), x is balanced. And since s and z are balanced, y is balanced.
We now show that x and y are matched. Suppose y is not matched: some prefix a of y with more “]”. Then
[x]a is a prefix of s with more “]”, because [z] is balanced. This contradicts s being matched, hence y is matched.
Suppose z is not matched. So, some prefix 8 of z has more “|”; 8 # = because z is balanced. Consider [8 which is
a prefix of s. f([8) > 0 because s is matched and § has more “]”, so 8 has exactly one more “]” than “[”, which
means that f([8) = 0. But this contradicts s[0] - - - s[i.] being the first prefix that is balanced. "

(b) Suppose s is a balanced and matched string that is not in M.

(i) By well-ordering, choose s to be the balanced and matched string of minimum length that is not in M.
ii) By (a), s = [z]y where z,y are both balanced and matched.
(111) T and y are at least 2 characters shorter than s.
) s has minimum length among balanced matched strings not in M. z,y are both balanced and matched, but
shorter than s. Thus z,y € M. By the constructor rule, s = [z]y € M, which contradicts s ¢ M. n

Exercise 8.4.
(a) Ny =N.
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(b) Structural induction with Nj is exactly strong induction:
1. (Basis) Show property P holds for 1, i.e. P(1) is T.
2. (Structural Induction) Assume P(1),..., P(n) and prove P(n+1), i.e. show P(1)AP(2)A---AP(n) — P(n+1)

Exercise 8.5.

(a) zey = 0101110; yex = 1100101. The order in which you do the two concatenations does not matter, (zey)ez =
ze(yez) =xey*z =010111010110.

(b) (zey)* = 0111010; (zy*z)* = 011010111010.

(c) Let n = |y|. We prove that (zey)® = y"ex" by strong induction on n = |y|. If n = 0 (y = €), there is nothing to
prove (base case). Suppose the claim holds up to n > 0, that is (zey)® = y* ez™ whenever |y| < n. Now consider
any y with |y| = n + 1 and write y = y},,)b where b is a single bit and yj,) is the prefix of length n. Then

(@oy)" = (@oyp) *b)" = be(zoy)" = boyfyoa" = (y *b) oa" = y"ea™.
First we apply 11 to b, then to y,) and then to b again (all of which have length at most n). n
(d) The base case, n = 2, is in (¢). Assume the claim holds for n > 2 and consider n + 1:
(1-1.1-2. N '.’L’n°l’n+1)R = ((];1.1-2. N .xn).xn+l)R

:H $2+1'($1'562' '.Tn)R

=z

H R R R R
= Tpi1°Tp®Tp_1® - *T]. n

Pop Quiz 8.6. ¢ — 11 — 0110 — 001100. A length 6 palindrome is zz" for with |z| = 3. There are 8 strings of length
3, hence 8 palindromes of length 6. In general, there are 2/ /21 palindromes of length n.

Exercise 8.7.

(a) We give the formal proof with numbered steps for easy reference.

1: The 3 base cases ¢,0, 1 are palindromes. (Strings of length at most 1 are palindromes.)

2: For the structural induction step, suppose we start with a palindrome z = z®. We must show that each
constructor rule produces a new palindrome. Using Exercise 8.5, (0ez¢0)* = 0% ez 0" = 0ez 0 and similarly,
(Lezel)® = 1Regtel® =1egel (because z = z®). Therefore both constructor rules produce palindromes.

3: By structural induction, every member of P is a palindrome. n

(b) Consider s, the shortest palindrome not in P. If s starts with 0, it ends in 0, so s = 0z *0. Further, z must be
a palindrome for s to be one. Now, x is shorter than s, so since s is the shortest palindrome not in P, it must be
that x € P. But then the constructor rule gives that s = 0ex*0 € P, a contradiction. A similar contradiction
arises if s = 1ex 1. Therefore, there is no shortest palindrome not in P, i.e. every palindrome is in P. L]

Exercise 8.8.
(a) We give the formal proof with numbered steps for easy reference.
1: The base case is 1 which clearly evaluates to 1 which is odd.
2: Structural induction: We consider each constructor rule separately. For rule 1, suppose x € Aopp and z is odd.
The constructor rule produces (z+1+1) and value((z+1+1)) = value(z)+2, which is odd because value(x)
is odd. For rule 2, suppose x,y € Aopp and z,y are odd. The constructor rule produces (z X y) whose value is
value(z) X value(y), which is odd because the product of two odd numbers is odd.
3: By structural induction, the value of every member of Aqpp is odd. u
(b) 14+1+1+1+1)
Pop Quiz 8.9. The number of links is 15. The number of vertices is 15. For any RBT, the number of links must be
one less than the number of vertices. So this tree cannot be an RBT.
Exercise 8.10.
(a) First size. By the recursion, size = 1 + size(left-subtree) + size(right-subtree) = 1 + 2 - size(left-subtree). The last
equality is because both child-subtrees are identical. Applying the same logic to the left-child,
size = 1+ 2(1 4 2 - size(left-left-child)) = 1 + 2 + 4 - size(left-left-child)
= 142+ 4+ 8- size(left-left-left-child)
= 14244+ 8+ 16 - size(left-left-left-left-child) =1+ 2+ 4+ 8+ 16 - 0 = 15.

£

Similarly, we can recursively obtain the height,
height =1+ 1+ 141+ 1 - height(left-left-left-left-child) =14+ 1+1+1—1=3.

€

(b) size(T) is just the number of vertices in the tree.
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(c) Define, for an RBT T, the property P(T) : size(T) < 2"#hT+L _ 1 P(e) is T because 0 = 277! — 1. Now
suppose that, for RBTs 71 and T, P(T1) and P(1%) are T. That is,
size(Tl) < 2height(T1)+l -1
size(Ty) < 2heisht(T2)+1 _ g
By the recursive definitions of size and height,
height(T) = 1 4 max(height(T1), height(7%))
size(T) = 1+ size(Th) + size(T3)

< induction hypothesis

By the induction hypothesis,

size(T) <1+ gheight(T1)+1 _ + oheight(T2)+1 _
_ gheight(T1)+1 + oheight(T2)+1 _
< Zmax(height(Tl),height(Tg))+1 4 2max(height(T1),height(Tg))+1 -1
_ 2max(height(T1),height(Tg))+2 -1
_ 2height(T)+1 —1.
So, P(T) is T and the constructor preserves property P. By structural iniduction, P is T for every RBT. [

Chapter 9

Pop Quiz 9.1. (a) 14+1+1=3. (b) 1+2+43=6. (c) f(i) =3 gives3+3+3=9. (d) f(1) =1; f(2) = 2; f(3) = 3 gives
1+2+3=6.
Pop Quiz 9.2. Ty(n) =5+>."  10=5+10-3 " , 1. The last sum is n, so T4(n) =5+ 10n.

Exercise 9.3.We use several common sums together with the constant and addition rules:

Sn) =S (1+2i+272) = "1+ 3204 > 242 (addition rule)
=1 =1 =1 i=1
=Y 1+23i+4> 2 (constant rule)
i=1 i= i=

=n+2xinn+1)+4x (2" —1-1) (common sums)
=2" 1l n -8 (simplify)

Exercise 9.4.

n n J
(@) Ti(m) =2+ X2+ 2 (5+ 3 2)]

s
Il
-
— —
<
Il
<

n n J
2+ 35+ X 2] (addition rule)

Il
S
+

o

N
Il
-

Il

=
M=
_|_
M
=
_|_
M= 7
NgE
MN

(addition rule)

~
Il
=
s
Il
-
<
I
=
<
Il
-
<.
I
=
£
I
<

n n n n n j
=2+23 1+53 > 1+23 > > 1 (constant rule on all three nested sums)

(b) 37_,1=3j+1—4. Thisis a common sum.
() Xl (G+l-i) =142+ -+ (n+1-i)= Syt te=1 s5(n+1—14)(n+2—14). (The last step is a common sum.)

d) To compute > " . (n+1—1)(n+ 2 — 1), we observe that as 7 goes from 1 up to n, n +1 — i goes from n down to
1=1
1. Letting £ = n 4+ 1 — 4, our sum can equivalently be written

g:l 0E+1) = Zj: 2 Z: L. (We used the addition rule to get the last expression.)
(e) We use the nested sum rule to compute > 7 | > i 1
Zn:l Xn: kXJ:‘l = il Xn:(] +1—19) (nested sum rule and (b))
i=1j=i k=i i=1j=i
=1 Zz::l(n +1—-9)(n+2—1) (nested sum rule and (c))
LRSI (using (d))

.
Il

\
|~
3
L

n+ 1)(2n +1)+ in(n+1) (common sums)

=
»
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For complex sums like this, always tinker and see if your formula works for small n. You can program a function
to compute the sum and test it against your formula. We did exactly that to verify our formula.

n 1 2 3 4 5 6 7

iiil 1 4 10 20 35 56 &4

i=1 j=i k=i

%n(n—f—l)(?n—l—l)—i—in(n—i—l) 1 4 10 20 35 56 84

Pop Quiz 9.5. The formulas at the top of page 117 give T1 € 6)(;13); Ty € ©(n?); Tz € O(nlogn); Ty € O(n). Thus,
(a) Ty is in Q(nlogn),w(nlogn), Q(n?),w(n?),0(n?),0(n?), QA(n?).

(b) Ty is in Q(nlogn),w(nlogn),0(n?),0(n?),Q(n?), 0(n?), o(n?).

(c) T3 is in O(nlogn), ©(nlogn), Q(nlogn),O(n?),o(n?), O(n?), o(n?).

(@) (nlogn), o(nlog n), 0(n?), o(n?), 0(n?), o(nd).

Exercise 9.6.

(a) f+ f=2f € O(f) because 2 is a constant. Similarly f+ f+ f = 3f € ©(f). With n terms, f+ f+---+ f =
nf € O(nf) (you cannot ignore the n because it is not a constant).

(b) lim(c- f)/f — ¢ = constant so ¢ f € O(f).

(¢) (i) Follows from the calculus fact that for any €,k > 0, limy_ oo log® n/n¢ = 0.
(ii) Follows from n® /ncloe™ = pk—cloen _, ¢
(iii) n* /2" = 2klesan—en g,
(iv) Follows from logn* = klogn so logn*/logn — k = constant.

(d) (i) Follows from (1++/n)/n=1/n+1/y/n — 0.
(
(

T4 is in O(nlogn

i) Follows from (+ + %)/% =1+ 5/n — 1 = constant.
i

iii) We must prove upper and lower bounds. The upper bound follows from:
logn! =logn +log(n —1)+---+logl <logn+logn+---+logn = nlogn.
For the lower bound, observe that log(2n)! = log(2n)(2n — 1)(2n — 2)(2n — 3) ---2 - 1, hence
log(2n)! < log(2n)?(2(n —1))*--- 2% = 2logn! + 2nlog 2.
(We get this bound by grouping in pairs, for example 2n(2n — 1) < (2n)2.) Also,
log(2n)! = log(2n) + log(2n — 1) + - - - + log(n + 1) + logn!
> log(2n) +log(2n — 1) +--- + log(n + 1) > nlogn.
Combining the two bounds, 2logn! 4+ 2nlog2 > nlogn, or,
logn! > %nlogn —nlog2 = inlogn + %n(logn —4log?2).
We conclude that logn! > inlogn which is true from the inequality above for n > 2* because logn — 4log2 > 0
and it can be verified for n = 1,...,15 explicitly.

(e) f= axn® 4+ g where g has only lower order terms, at most k such terms. Let the largest coefficient in g be A.
Then |g| < k|A|n*~t. We have that f/n* = ax 4+ g/n" and |g/n*| < |A|kn*~!/n* = |A|k/n. Since |A| and k are
constants, |g/n”| — 0 and we have that f/n* — ax = constant. This proves f € ©(n").

(f) Yes, f is polynomial. The highest power “appearing” is n which has order 1. From the previous problem you might
think f € ©(n). Wrong. The notation is deceiving because there are many terms and the term of order n does not
appear just once as in a traditional polynomial. For example n/2 appears somewhere in the middle, which is also of

order 1. There are n/2 terms that are at least n/2, so f > n?/4. In fact, we know that f(n) = in(n+1) € O(n?).
To clarify (i), we emphasize that in a polynomial, each term of a particular order appears at most once.

(g) Suppose n® € O(n), i.e. n® < Cn for a constant C' (by taking [ C'|, we may assume C' is an integer). Let n = 2C;
then, 402 < 2C? or 4 < 2, a contradiction. Therefore n® ¢ O(n).

(h) Since f € ©(r) and g € O(s), there are positive constants ¢, C' and d, D for which
cr<f<C-r and d-s<g<D-s.
(i) Adding the left hand sides and similarly the right hand sides gives cr + ds < f + g < Cr + Ds. Since
cr +ds > min(c,d)(r + s) and Cr + Ds < max(C, D)(r + s), we have that
min(c,d)(r + s) < f+ g < max(C, D)(r + s) — f+geO(r+s).
(ii) Instead of adding, if we multiply, we get cd - (rs) < fg < CD - (rs), or that fg € O(rs).
(i) (i) No. Consider f = 2n and g = n, then f € O(g). But 2/ /29 — 22" /2™ = 2" — oo.
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(ii) Yes. We have that ¢- g < f < C - g. Everything is positive and log is increasing so take log of both sides to
get log g + loge < log f <logg+ logC. That is log f € O(logg).

O-notation blurs small diffenences (constants). Exponentiation blows up those differences, so one must be careful.
Logarithms further reduce differences and so are safe with O-notation.

(G) (a) f € ©(g) — f € O(g) is T because O(-) requires upper and lower bounds but O(-) requires only the upper
bound: ©(g) C O(g). (b) The converse, f € O(g) 4 f € O(g) is F. For a counter-example, consider f = n and
g=n’. (c) Yes: c-g< f<C-gimplies 5 - f<g<21.f.

(k) Suppose f € O(n), then f < Cn < Cn?. That is f € O(n?), which means O(n) C O(n?). It is a proper subset
because n? ¢ O(n) but n*> € O(n?). ©(n) ¢ O(n?) because n € O(n) but n & O(n?).

(1) We can use the definitions based on the limits or the more formal definitions based on bounds.

(i) f/h=(f/g) - (g/h); since both terms on the RHS converge to a constant because f € O(g) and g € O(h),
f/h — constant, i.e. f € ©(h).
(it) f/h=(f/g) - (g/h) — 0 (both terms on the RHS converge to 0), i.e. f € o(h).

(i) f<C-gand g <C'-himplies f < C-(C'-h)=CC’"-h,ie feO(h).

(iv) f/h=(f/g) - (g/h) = oo (both terms on the RHS converge to c0), i.e. f € w(h).

(v) f>C-gand g > C'"-himplies f > C-(C'-h)=CC’-h,ie. feQh).

(m) For positive numbers z,y, We use the identity: max(z,y) < z + y < 2max(z,y). Suppose r € O(f + g). Then,

r < O(f +9) < 2Cmax(f,9),
ie., r € O(max(f,g)) and O(f + ¢g) C O(max(f,g)). Suppose r € O(max(f,g)). Then,
r < Cmax(f,9) < C(f +9),
ie,r€O(f +yg) and O(max(f,g)) € O(f +g). O(f +g) € O(max(f, g)) and O(max(f,g)) € O(f + g) implies
O(f +g9) = O(max(f, g)).
Similarly, suppose r € ©(f + g). Then,
cmax(f,g) < c(f +g) <r < O(f +g) < 2Cmax(f, g),
ie, r € O(max(f,g)) and O(f + g) C O(max(f,g)). Suppose r € ©(max(f,g)). Then,
3¢(f +9) < cmax(f,g) <r < Cmax(f,9) < C(f +9),
ie., r € O(f +g) and ©O(max(f,g)) C O(f +g). O(f +g) C O(max(f,g)) and O(max(f,g)) C O(f + g) implies
O(f + g9) = O(max(f,g)).

(n) We have that c- g < f < C-g. Summing: ¢- Y. g(i) <>, f(i) < C -3, g(¢), which means Y, f(i) € O3, g(i)).

(o) We prefer T1 because its running time is asymptotically faster.

(p) We don’t know because T could be n (we prefer Tb) or n® (we prefer T1) — both cases are in O(n®). When possible,

give runtimes using ©-notation, O(-) is ambiguous. (If 71 = 10 and 7> < 20, which is better?)

) Similar to (t). T» could be n or n®®. (If T, = 10 and T» < 20, which is better?)

(r) T1 is asymptotically better than Tb (T is “equal to” n? versus Tb is “greater than” n?) so we definitely prefer Tj.

(s) Ti is no worse than T (11 “equals” n? versus Th is “at least” n2). We prefer T7, though T5 could be as good.

(t) T could be n or n®, both are in Q(n). Like O(-), Q(-) is ambiguous. Whenever possible, give a ©-analysis.

) T>» is asymptotically better? Theoretically, T> is a better run time but see (z).
) Asymptotically T is better: for n — oo, To < Ti. But, T» does not win until n > 103°. That is a large input,
unlikely to occur in practice — most estimates for the number of atoms in the Universe are less than 10'°°.

Pop Quiz 9.7. We have that .1 i =n(n+1)/2 and > 1 ;2" = 2""' — 1. Therefore

2

(i) o i =n*(n? +1)/2 € O(n*). (i) Y2, i = 27(2" + 1)/2 € ©(2°"). (i) 377,20 = 22" — 1 € ©(2°").
Exercise 9.8. 1.2

o4
EM 2
%O' 7,T1
1.5
E 5"
=
E
wn

0'90 200 400 600 800 1000

n
Exercise 9.9. In all cases, let S(n) denote the sum.
(a) Since (1+1i)? is increasing, [)'dz (1+2)* < S(n) < 1"“ dx (1 + z)?. Computing the integrals,
5(n+1)°<8Mm) < i((n+2)°-1).
Since the lower and upper bounds are in ©(n?), S(n) € O(n?).
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(b) Since 2 is increasing, fo dzx 2 < S(n) < f"“ dz 2°. Computing the integrals,
1n2(2n - 1) < S( ) — 1112(2n+1 2)
Since the lower and upper bounds are in ©(2"), S(n) € ©(2").
(c) Since 42" is increasing, fon dx 22 < S(n ) n“ dz 22%. Computing the integrals,
men?" — s + s S S(n) < pz(n+1)2"" — -t s
Since the lower and upper bounds are in (9(712") ( ) € ©(n2").
(d) Since (1+4%)~" is decreasing, [} "z (142271 < S(n) < Jo dz (142 %)=, Computing the integrals,
arctan(n + 1) — 7 <8(n) < arctan(n).
Since the lower and upper bounds are in ©(1), S( ) € ©(1).
)
<

1122

(e) Since i/(1+4) is decreasing, [/ "z x/(1+2%) < S(n) < Jo dz x/(1+ z?). Computing the integrals,
L b(1+ (14 7)) < S() € In(1 4 ).
Since the lower and upper bounds are in ©(logn), S(n) E O(logn).
(f) Since 27 is increasing, fo dz z2°° < S(n) < f"“ dz z2°°. Computing the integrals,
’I’L n 2
21r12(2 —1) < S(n) < 51527 —2).
The lower bound is in @(2"2) and the upper bound is in @(2"2+2"), which are asymptotically different, on* ¢
0(2"2+2”). We cannot immediately get the ©-behavior for S(n). The integration bounds are too loose.
A simpler analysis gives tighter bounds. The largest term in the sum is n2"" and there are n terms, so
n2"’ < S(n) < n22"’.
The lower bound is asymptotically tight because S(n—1) < (n— 1)22(”_1)2, so S(n)=S(n—-1)+ 712”27 therefore
n? 25(n—1)2 n? (n=1)25—2n n? —2n 3, on?
S(n) < n2" + (n—1)%2 =n2 (1+QT2 )gn2 (1+2n272") < 3p2n’,
(because 2% < £ for « > 0). Therefore, S(n) € (9(712"2)7 because n2"” < S(n) < %n2"2.

Exercise 9.10.
(a) This is just the sum written out.

(b) Multiply the expression in (a) by 2 on both sides.

(c) Subtract (a) from (b): 2S(n) — S(n) = —2' =22 — 2% — ... — 2" 4 2"t = pontl 5™ 9f
(d) Use (c) with Y7 | 2° =2(2" — 1), S(n) = n2""" —2(2" — 1) = (n — 1)2"*! + 2.
Exercise 9.11. The red areas are larger than the green because (Inz)”’ = —1/2% < 0

(the slope of In z decreases). Computing the integral replaces each red region in the
rectangle with the corresponding green region, therefore we get a lower bound:
f3 "2 0 Ing < Ii:glni =Innl
Evaluating the integral on the left, we get
(0 i+ )= (n+ 1)~ 2+ 3 <l
Exponentiate both sides to get

Lastly, using the approximation (1

+
1 nt+i n
(n+§) n+3 _ |:(1—|—ﬁ)2nj|( +3)/2 %e%+ﬁ _ 6'61/4n~

n

And since e!/*" =14 ©(1/4n), we get the desired approximation n! ~ n™e™"\/n(2e/3)3/2.

Chapter 10

Pop Quiz 10.1. 27 =3 X 7+ 6 (r = 6). By setting ¢ = 3,2,1,0,—1,... we get r = 6,13,20,27,.... The smallest
positive remainder is 6. Generally, to get the smallest remainder, set ¢ = [n/dJ andr=n—qd=n— Ln/dJ -d
Exercise 10.2. The proofs all use the fact that d|n if and only if n = dk for k € Z.

(a) 0=0-d (¢ =0), so d|0.

(b) Suppose d|m and d'|n, so m = gd and n = ¢’d’. Then mn = (qq')dd’. That is dd’'|mn (quotient = ¢q’).

(c) Suppose dlm and m|n, so m = qd and n = ¢'m. Then, n = ¢’qd so d|n (quotient = ¢'q).

(d) Suppose d|n and d|m, so n = qd and m = ¢’d. Then n +m = (¢ + ¢’')d. That is d|n +m (quotient = q + ¢').
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(e) Suppose d|n, so n = gd. For z € N, zn = qzd, so zd|zn (quotient = q).

(f) Suppose d|lm + n and d|lm, so m +n = gd and m = ¢’d. Then, n = qd —n = qd — ¢'d = (¢ — ¢')d. That is d|n
(quotient = q — ¢').

Exercise 10.3.

(a) Let P(n) = n is divisible by a prime. P(2) is T because 2 is a prime. Suppose P(2),..., P(n) are all T. We show
that P(n+ 1) is T. If n+ 1 is prime, then n + 1 is divisible by the prime n + 1. Otherwise, n 4+ 1 is composite:
n+ 1 = kf, where 2 < ¢ < n. By the induction hypothesis, ¢ is divisible by a prime, so £ = gp where p is prime.
Therefore n+ 1 = kgp which shows that n+1 is also divisible by the prime p. By induction, P(n) is T for all n > 2.

(b) Suppose there are finitely many primes. Then, there is a largest prime p. Consider p! + 1, which has a remainder
of 1 when divided by 2,3,...,p. By part (a), p! + 1 must be divisible by a prime. This prime must therefore be
larger than p contradicting p being the largest prime. Therefore there are infinitely many primes.

Pop Quiz 10.4. ged(n,0) = n because n|0 and n|n. ged(0,0) is not defined (not both integers can be zero).

ged(n,n) = n because n|n. ged(n, 1) = 1 because the largest divisor of 1 is 1.

1 if p does not divide n;
p if p does divides n.

Exercise 10.5.

ged(n, p) = (Because the only divisors of p are 1 and p.)

ged (34, 55)
= ged(21,34) 21 = 55— 34
= ged(13,21) 13 =34-21=34—(55—34)=2-34—55
= ged(8, 13) 8 =21 13=(55—34)— (2-34—55) =2.55—3.34
= ged(5,8) 5=13-8=(2-34—55)—(2-55—3-34) =5-34—3-55
= ged(3,5) 3=8-5=(2-55—3-34)—(5-34—3-55) =5-55—8.55
= ged(2,3) 2=5-3=(5-34—3-55)— (5-55—8-55) =13-34 — 8-55
= ged(1,2) 1=3-2=(5-55—8-55)—(13-34—8-55) =13 -55 — 21 - 34
= gcd(0,1)
=1

Each remainder is a linear combination of the original two numbers. Finally, gcd(34,55) =1 = 55 x 13+ 34 x (—21).
Exercise 10.6. 6z+15y = 3-(2z+5y). Setting x = —2k,y = k gives 3k, all the positive multiples of 3. ged(6,15) = 3.

Exercise 10.7.
(a) Suppose dlmn. By Bezout, there are z,y for which ged(m, d) = mz + dy. Multiply both sides by n to get

ged(m,d) - n = zmn + ynd.
d divides mn, so d divides both terms on the RHS. Therefore d must divide the LHS. n
(b) We are given that ged(d,d’) = 1 = dz + d'y (Bezout’s identity). Multiply both sides by n to get
n = xzdn + yd'n.
Since d|n, n = ad; since d’'|n, n = o/d’. Rewriting the equation above,
n=za'dd +yadd = (za’ +ya)dd',
which means dd’|n as was to be shown. ]
(c) Let D = ged(m,£) and D' = ged(n, £). By Bezout’s identity, D = mx + £y and D' = na’ + £y’. Multiplying,
DD’ = (mx + £y)(nz' + Ly') = mn(zx’) + Lynz’ + may’ + lyy). (%)
Since DD’ > 0, the RHS is a positive linear combination of mn and £. The smallest positive linear combination of
mn and £ is ged(mmn, £), so ged(mn,£) < DD’.
To show the reverse, that DD’ < ged(mmn, £), it suffices to show that DD’ divides mn and £ because then it can’t
exceed the greatest common divisor. By Exercise 10.2(b), DD’|mn. We show that DD’|¢ using part (a) of this
exercise. For part (a) to apply, we must show that ged(D, D’) = 1. Note that ged(D, D')|m because ged(D, D")|D
and D|m; similarly, ged(D, D”)|n. So, ged(D, D’) is a common divisor of m and n, hence
ged(D, D) < ged(m,n) = 1.
Thus, ged(D, D') = 1. By part (a), since D|¢ and D’|¢ (why?), it follows that DD’|¢. Thus DD’ is a common
divisor of mn and ¢ and hence DD’ < ged(mn, £).
Since ged(mn, £) < DD’ and DD’ < ged(mn, £), it follows that ged(mn, ) = DD’. "
[Note: It is essential that gecd(m,n) =1 (consider m =n = ¢ =15).]
(d) Using the same notation in (b), we are to show that ged(mn, ) =1 if and only if D =1 and D' = 1.
First, suppose D =1 and D’ = 1. In (b), () showed that ged(mn,£) < DD’ = 1, which proves ged(mn, ) = 1.
Now, suppose ged(mn, £) = 1. Any divisor of m and ¢ is also a divisor of mn and £ so ged(m, £) < ged(mn, ) = 1.
Similarly, ged(n, ) < ged(mn, £) = 1. We conclude that ged(m, £) = ged(n,£) = 1. "
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(e) Let D = ged(ged(¢,m),n) and D' = ged(¢,ged(m,n)). Since D|ged(¢, m), d|¢ and d|m; also D|n. Since D|m and
D|n, by GCD fact (ii) on page 132, D|gcd(m,n). Thus, D is a common divisor of £ and ged(m,n), and D < D’.
A similar argument proves reversed inequality D’ < D: D’ divides £, m and n; this means D’| ged(¢, m) and hence
D' is a common divisor of ged(¢, m) and n. It follows that D’ < D. Therefore, D = D’. "

Exercise 10.8.

(a) By Bezout, we know ged(m,n) = mx + ny = m(z + an) + n(y — am). By taking a as large as we wish, we can get
Bezout coefficients so that the coefficient of m is positive. Now consider the smallest non-negative coefficient x,
so ged(m,n) = mz + ny and there is no smaller non-negative Bezout coefficient z. We claim 0 < z < n, because
otherwise z — n and y + m are Bezout coefficients and  — n is non-negative and smaller than z (a contradiction).

(b) Suppose ged(m,n) = mx 4+ ny = ma’ + ny’, where 0 < z < 2’ < n. Then m(z’ —z) = n(y — y') and n divides the
RHS, so n|m(z’ — x). Since ged(m,n) = 1, it means n|(z’ — x) which is impossible because 0 < ' — z < n. This
contradiction proves that x’ does not exist.

For the counter example, consider m = 2,n = 4. Then ged(m,n) =2=2-14+4-0=2-3—-4-1.

Exercise 10.9. We use induction on n. The base case is n = 2: if p|qig2, then, by Euclid’s Lemma, p = ¢1 or p = g2.

For the induction, assume that for any n primes, if p|q: - - - g2 then p equals one of the ¢;. Consider any n+ 1 such that

plq1 -+ gnqn+1. That is p|(g1 - - ¢n)gn+1. By Euclid’s Lemma, either p|gn+1 or plgi - - - gn. In the former case, because

Gn+1 1s prime, p = gn+1; in the latter case, by the induction hypothesis p equals one of the ¢;. In either case p equals

one of the n 4+ 1 primes qi, ..., gn+1, proving the claim for n 4+ 1. The claim follows by induction for n > 2. n

Pop Quiz 10.10. This is the Fundamental Theorem of Arithmetic in disguise. Every n > 2 is a product of primes,

n = pip2 - Pn: a1 is the number of times 2 appears; a2 is the number of times 3 appears; and so on. The a; must be

unique because if not, then n is a product of primes in two different ways, which cannot be. n

Exercise 10.11. (a) False. 83 is prime, so if 83|38 x 37 x - - 1, then 83 divides one of the terms in the product, which

can’t be as all the terms are smaller than 83. (b) True. p* —1 = (p — 1)(p + 1). Since p is prime, both p — 1 and p+ 1

are even, and one is divisible by 4. So p*> —1 = 8k. Also, 3 divides p? — 1 because 3 divides one of the three consecutive

numbers p — 1,p,p + 1, and it’s not p because p is prime. Hence 3|8k and so 3|k,that is k = 3¢ and p? —1 = 244.

Exercise 10.12. We must show ged(kMi, kM2) = k. The only divisors of kM; are 1, k and M, since k and M; are

different primes. Similarly, the only divisors of kM> are 1, k and Ms. The largest common divisor is k. n

Exercise 10.13. We have: a = b (mod d) and r = s (mod d). That is,

a—b=kid and r—s = kod.

(a) ar —bs = (b+ ki1d)(s + kad) — bs = (k1s + k2b + k1kad)d . So, dlar — bs, i.e. ar = bs (mod d). "

(b) (a+r)—(b+s) =b+kid+s+kad—b—s=(ki+ka)d. So,dl(a+71)—(b+s),ie.a+r=b+s (modd). m

(¢) We use (a) and induction. When n = 1, we are given that a = b (mod d). Suppose a™ = b" (mod d). Applying
(a) with » = a™ and s = b", we get a" ™ = "' (mod d). By induction, a™ = b™ (mod d) for n > 1. "

Pop Quiz 10.14.

(a) (mod 3): Oserve that 5% = 1. Therefore by Exercise 10.12(c), 5° = 1?". Note 1" = 1. So, 5?°* = 1. Multiplying
both sides by 5 (Exercise 10.12(a)), 5?°'> = 5 = 2. The remainder is 2.

(b) (mod 5): 52°'® is divisible by 5 so the remainder is 0.

(¢) (mod 7): 5% = —1, so 5212 = (53)%7! = (—1)°"! = —1. Hence, 5°°'° = —25 = 3. The remainder is 3.

(d) (mod 9): 5% = —1, so 52°'® == —1. Hence, 5?°'° = —25 = 2. The remainder is 2.

(e) (mod 11): 5% = 1, so 5%°1® = (5°)%% = (1)*°® = 1. The remainder is 1.

Exercise 10.15.

(a) £ =15"" (mod 6) which does not exist because gcd(15,6) = 3 > 1. Alternatively, 15z — 1 = 6k — 15z — 6k = 1,
a contradiction (LHS is divisible by 3, not the RHS). Hence x does not exist.

(b) £ =15"" (mod 7), so & = 1. To get all solutions we can add any integer multiple of 7, so x = 14 7k, k € Z.

(c) 15z — 6 = 27k <> 5z — 2 = 9k so 5z = 2 (mod 9). Note, 5' = 2 (mod 9) because 2-5 = 1 (mod 9). We need
50.=2—=51-5x=5"-2—2=4 (mod 9), because 57 * - 5 = 1. Adding multiples of 9 gives x = 4 + 9%,k € Z.

Exercise 10.16.
(a) (i) If k=0 then 0P =0 and 0 — 0 = 0 is divisible by p. If k = p then p? — p = p(p ' — 1) is divisible by p.
(ii) If ¢ € {1,...,p — 1}, then ged(p,i) = 1. If p|ik then by Exercise 10.7(a), p|k, that is k is a multiple of p, a
contradiction. So, p does not divide ik and ik is not a multiple of p.
(iii) Immediate from Theorem 10.9 on page 135, because ged(k,p) = 1.
(iv) Since ik is not a multiple of p, by part (ii), o; # 0. Thus, o; € {1,2,...,p — 1}.
Suppose i,j € {1,...,p— 1}. We show, by contradiction, that if 7 # j then a; # «;. Suppose a; # «;. Then
itk = ¢;p + o and jk = ¢jp + «;. Subtracting, ik — jk = (¢; — q;)p. That is, ik = jk (mod p). By (iii), i = j

SOL — 18



30. SoruTioNs TO QUIZES & EXERCISES

(mod p). Since ¢,5 € {1,2,...,p — 1}, this means i = j, a contradiction. Thus, o # ;. Since no two a; are
equal, a1, @z, ...,ap_1 is a permutation of 1,2,...,p — 1, which means [ _1 a; = (-1
(v) Since ik = a; (mod p) by repeaded use of Exermse 10 12, [1°2) ki = 1P} s (mod p). [TPZ) ki = kP~ (p —
1)! and by (iv), [T°Z ai = (p — 1)!, therefore
K p—1)!=(p—1! (mod p). (+)
If p divides (p — 1)!, by Euclid’s Lemma on page 133, p divides some term in the product. Since every term
in the product is less than p, that is not possible, so p does not divide (p — 1)!. The only other divisor of p is
1, so ged(p, (p — 1)!) = 1. Use Theorem 10.9 on page 135, to cancel (p — 1)! from both sides of () to get
E~'=1 (mod p).
Multiplying both sides by k, since k = k (mod p), gives Fermat’s Little Theorem.
(b) If p divides k, no multiplicative inverse exists as ged(k,p) = p > 1. If p doesn’t divide k, k= = 1 (mod p). Let
E~' = kP72 (mod p). Then k- k=" = kP~* =1 (mod p). That is, k72 is the multiplicative inverse of k.
(c) (i) We find z,y such that 8z + 19y = 1 using the remainders in Euclid’s GCD-algorithm:

ged(8,19) = ged(3,8) rem(19,8) =3 = —8-2+419
= gcd(2,3) rem(8,3) =2 =8—-3-2
= 8—(-8-2+19) 2
=8-5—-19-2.
= ged(1,2) =1 rem(3,2) =1=3-2
= —8-2+19—(8-5-19-2)
=8 (=7)+19-3.

Therefore £ = —7 and 87! = rem(—7,19) = 12. Indeed, 8 x 12 =1 (mod 19) because 8 x 12 — 1 = 19 x 5.
(i) 87 = 8'7 (mod 19). We observe that 8% = —1 (mod 19). Therefore,
8" =(-1)°=-1 (mod 19).
Finally, 8'7 = —64 = 12 (mod 19), so 87! = 12 (for modulus 19).
Exercise 10.17. M?72>M, = MP 'k (mod p). Assuming M is not a multiple of p, by Fermat’s Little Theorem,
MP™' =1 (mod p). Multiplying both sides by k gives MP~'k = k (mod p), that is,
MP 7M. =M" 'k=k (mod p).
So Charlie obtains k by computing rem(M? 2 M., p).
Exercise 10.18. Alice encrypts to M. = M??® (mod 391) and Bob decrypts with MY7 (mod 391). E.g., for M = 2,
27 =128 — 2! = 1282 = 353 — 2%® = 353% = 271 — 2°% = 271% = 324 — 2''? = 3247 = 188,
and finally we have 2?2° = 2. 1882 = 308 (mod 391). Bob decrypts as follows:
308° = 246 — 308° = 246> = 302 — 308" = 302” = 101 — 308** = 101% = 35 — 308" = 35° = 52,
and finally we have 308°” = 308 - 522 = 2 (mod 391). Here is the table of results for M = 2,..., 10,

M 2 3 4 5 6 7 8 9 10
M, | 308 105 242 158 278 109 246 77 180 (Bob always recovers M.)
Bob’s decryption 2 3 4 5 6 7 8 9 10

Exercise 10.19. Let n = pg; M. = M® (mod n). We decode using M¢ = M*® (mod n), and must show M = M
(mod n) (i.e. we recover the correct message for any M).
(a) Since ed=1 (mod (p—1)(¢ — 1)), ed — 1 is divisible by (p —1)(¢ — 1), or ed — 1 = k(p — 1)(¢ — 1) for k € Z.
(b) (i) By (a)ed —1=Fk(p—1)(qg—1), so M1 = pre-Dla=1),

(i) By Fermat’s Little Theorem, M?~! =1 (mod p) (because p does not divide M). This means M?~* —1 = ap

for an integer «, or that M = 1+ ap. Therefore,
Med—t = ppre-D(e-1) _ (MP~ 1) (¢—1) _ =(1 +o¢p)k(‘1 D
(iii) By the Binomial Theorem,
. k(g—1) o k(g—1) k(g — 1)\ i
1+ ap) @Y 14 Z ( . )azplzl—&—p Z ( . )o/”p2 L

c (3
i=1

B
We could also use a” — 1= (a —b)(1+a+a’+---+a" ") with a =1+ ap:
(1+ap)"V —1=p(a+a(l+ap) +a(l+ap)’ +-- +a(l+ap)@ V7).
B
Either way, § is a sum of integers, hence an integer. We have proved: M¢?~! = 1+ ap)k(q_1> =1+0(p. =
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(iv) From (iii), M4~ — 1 = Bp, that is p|M°?~! — 1.

(c) By (b), either p divides M or if not then it must divide M°?~! — 1. That is p must divide their product M®? — M.
Everything is symmetric with respect to p and ¢ and so using exactly the same reasoning, q|M®* — M.

(d) Since ged(p,q) =1 and both p|M®® — M and ¢|M°® — M, Exercise 10.7(b) on page 132 gives pg|M°* — M.

(e) From (d), by definition, M°* = M (mod pq). Bob can decode by computing rem(MZ, pq).

Chapter 11

Pop Quiz 11.1.

(a) V={1,2,3,4,5,6}; E

(b) V ={a,b,c,d,1,6}; E

(C) V:{ivjakvévman}§ E:{

(d) V={i4,k t,mn}; E=/{

Exercise 11.2. Isomorphic graphs: {I, II}

(a) Relabeling doesn’t change the number of vertices. Similarly, the edge end points are relabelled, but their number
is unchanged.

(b) In the relabeling, suppose vertex v is repabeled to £(v). Then every edge in the graph (v, w) becomes (£(v), £(w))
and deg(v) becomes deg({(v)). Every vertex w which contributes to deg(v) is relabeled to a vertex £(w) which
contributes to the degree of £(v). Therefore, the degree of each vertex does not change.

(c) Suppose v1vz - - vy is a path. Every edge (v;, vi+1) is in the graph since vivz - - - vy is a path. After relabeling, the
edge (£(v;),€(vit+1)) is in the relabeled graph. Hence ¢(v1)€(v2) - - - €(vx) is a path in the relabeled graph.

(d) Every path is preserved as a relabeled path. This includes shortest paths and shortest path lengths.

Exercise 11.3. There were some trick questions in this exercise.

(a) (&o An isomorphism preserves all paths (see Exercise 11.2). In the first graph, there is a path
{:} )}) between every pair of vertices, but not so in the second, so the graphs cannot be isomorphic.

(b) Trick question. All graphs with the degree sequence [3,3,2,1,1] are isomorphic. To see this label the vertices
A, B,C, D, E (highest to lowest degree). A has 3 neighbors. Either B is one of these neighbors or ®
not. If not, then since B also has degree 3, A and B are neighbors of C, D, E. This is not possible
since C, D, E have respective degrees 2,1,1. Therefore B is a neighbor of A. The situation is @a—0O O
illustrated on the right. (Since there are two degree 1 vertices, at least one (E) is a neighbor of A.) ®)

Since F cannot have any more neighbors, and B must have two more neighbors, it must be that (®)
B is connected to the other two vertices, completing the picture as shown on the right. There is E© ®
no other way to construct a graph with this degree sequence. (Not all degree sequences can be ‘
realized by different, non-isomorphic, graphs. Another classic example is [n — 1,1,1,...,1].)

(¢) Trick question. No graph has these degrees because the sum of the degrees is 13 (more later).

Pop Quiz 11.4. This graph cannot exist because there are an odd number of odd-degree vertices.

Exercise 11.5.

(a) If every degree is positive, 2m = 3. d; > n, so m > n/2. Example: g g g g

(b) Equivalently, we compute the maximum number of edges a graph with a degree 0 vertex can have. Let v be the
degree 0 vertex and n the number of vertices. Every vertex other than v can have an edge to every vertex other
than v, so ever vertex other than v has degree n — 1. The number of edges is 3(n — 1)(n — 2) (half the sum
of the degrees). This is the maximum number of edges for a graph with a degree 0 vertex. So, if a graph has
1+ 2(n—1)(n — 2) edges, it cannot have a degree 0 vertex.

(¢c) The sum of the degrees is 5 x 3 = 15. There are no such graphs, since the sum of the degrees must be even. You
could also argue that such a graph would have 5 vertices of odd degree, which violates Corollary 11.3.

Exercise 11.6.

(a) The dotted edge creates a cycle, and a tree is connected with no cycles.

(b) Steps 1-5 are not connected. After step 6, any new edge would create a cycle.

(¢) This is an important result so we give two different proofs.
Theorem 30.1. A graph with fewer than n — 1 edges is not connected.

Proof. 'We prove the claim by induction on n. The base case is n = 2 in which case the graph with 0 edges is
clearly not connected. Consider any graph with n + 1 vertices and fewer than n edges. Every vertex cannot have
degree at least 2 (the sum of the degrees would be at least 2(n + 1) implying at least n + 1 edges), so some vertex
v has degree less than 2. If deg(v) = 0 then the graph is disconnected as was to be shown.
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and e from the graph. The shaded graph that remains has n vertices and fewer than n — 1 edges €

(we removed one vertex and edge). By the induction hypothesis, this residual (shaded) graph is “

We show the situation with deg(v) = 1 on the right. The shaded region is the rest of the
graph, other than v, and there is an edge e from v to one node in the shaded region. Remove v J/@
)
not connected: two vertices (illustrated by = and y) are not connected by any path. Adding back \_/
v and e cannot create a path between z and y, so x and y remain disconnected in the original graph. Thus, any
graph with n + 1 vertices and fewer than n edges is not connected, so the theorem follows by induction. L]
We now give a proof of a more general result from which Theorem 30.1 follows. A component in a graph is a
“maximal” set of vertices that is connected. The component of a vertex v is all the vertices connected to v,
C(v) = {u | u is connected to v by a path}.

Any vertex in a component can be used to define that component, that is if u € C(v) then C(u) = C(v): any vertex
in C(v) is connected to u by going first from u to v and then to the vertex, hence C(v) C C(u); similarly any vertex
in C(u) is connected to v by going first from v to u and then to the vertex, hence C(u) C C(v).

C&O O O
?3 (o] o
(o]
1 component 2 components 6 components

A connected graph has one component. A graph with n isolated vertices (no edges) has n components. Adding an
edge between two vertices in the same component, does not change the components. Adding an edge between two
vertices in different components merges those two components, decreasing the number of components by 1.

Lemma 30.2. Adding an edge can decrease the number of components by at most 1.

We use this lemma to prove our general result:

Theorem 30.3. A graph with n vertices and e edges has at least n — e components.

Proof. Start with the n isolated vertices, (n components) and add the edges one by one, each time decreasing
the number of components by at most one. So the number of components decreases by at most e, leaving at least
n — e components. The formal proof is by induction on e, the number of edges. In the induction step start with
e+ 1 edges and remove an edge. By the induction hypothesis there are at least n + 1 — e components. Add back
the edge and apply Lemma 30.2 to conclude there are at least n — e components. n
Theorem 30.3 implies Theorem 30.1 because if e < n — 1, then number of components > n — (n — 1) = 1. This
means the number of components is at least 2 and the graph is disconnected.

Suppose the graph has n + k edges, where £ > 0. We first prove the case that the graph has a single component.
This means that for any set of vertices there is at least one edge from a vertex in the set to a vertex not in the set
(otherwise that set of vertices is disconnected from the rest of the graph).

Let us build a connected component by adding one vertex at a time. Start at any vertex v;. There must be an

edge from v; to a second vertex vz. So we have build the set v1,v2. After we have built the set v1,ve,...,v;, there
must be an edge from a vertex in our set to an i + 1th vertex v;11. Continue this process until we have built the
set containing all the nodes v1,...,v, using n — 1 edges. By construction, this set of vertices is connected using

only the n — 1 edges — this set of n — 1 edges is called a spanning tree.

There is at least one more edge in the graph, say (vi, v;), since the graph has at least n edges. Before adding the

edge (v4,v;), there was a path from v; to v; in the spanning tree. The edge (v;,v;) plus this path is a cycle.

The formal proof is by strong induction. In the induction step, take any graph with n vertices and n + k edges.

Remove an edge e. If the graph stays connected, replacing e creates a cycle. If the graph gets disconnected then

one of the components has as many edges as vertices and contains a cycle. Replacing e won’t remove that cycle.

Now consider a graph with more than one component. Suppose the graph has ¢ components with ni,ns,...,ng

vertices in each component, and ej, ez, . .., e, edges in each component: ni;+nas+---+n;, = nand e;+ea+---+e; = e.

We claim that for some i*, e;+ > n;= because if not, then e; < n; for every i and
e=etext+--tep<n+tne+---+ng=n,

which cannot be since e > n. There must therefore be a cycle in the i*th component and hence in the graph.

Since this is an “if and only if”, there are two parts to the proof.

1. Suppose tree G is connected and has n vertices. By (d), if G has fewer than n — 1 edges, it is not connected. If

G has n or more edges, then by (e) it has a cycle and is not a tree. Hence G has n — 1 vertices.

2. Suppose G is connected with n nodes and n — 1 edges. We show G is a tree, i.e. there are no cycles. Suppose

G has a cycle. Remove an edge on this cycle. Every vertex remains connected with every other vertex, hence the

graph remains connected but has n — 2 edges. This contradicts (d). Hence G has no cycles.
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Exercise 11.7.

(a)

()
(d)

()

()

(g)

‘ Pyramid Cube Octahedron

|4 4 8 6
E 6 12 12
F 4 6 8
F+V-F 2 2 2

) For the pyramid, project the apex onto the base. Similarly for the cube, after moving out the base vertices.

'—» A —

For the octahedron, project the upper apex down to the base plane and place the lower apex outside the base.

(To get the more symmetric looking graph
r1ght project an upper triangular face
\( into the opposite lower triangular face.)

The faces become regions (polygons). One of the faces becomes the external (unbounded) region.
There is only one external face, so F' = 1. For a tree, we know from Exercise 11.6 that £ =V — 1. Therefore,

F+V—-E=1+V—(V-1)=2.

Consider a connected graph that is not a tree (i.e. has cycles).

(i) Look at what happens when you remove one edge from a cycle.

L0 (DD

There are two cases: the edge is between two internal faces (left) and the internal faces merge into one internal
face; the edge is between an internal face and the external face (right) and the external face merges with the
internal face to make a larger external face. In either case, the number of faces I’ decreases by 1. We removed
one edge but the number of vertices remained the same. So,

AFE = —1; AF = —1; and AV =0.

Paths not using the removed edge are unaffected. Paths using the removed edge can go the other way around
the cycle (instead of using the edge). Thus, if there was a path between two vertices, there still is.

( Removing an edge from a cycle does not affect connectivity )

(ii) Removing an edge from a cycle decreases E and F by the same amount, so the total change will be the same,
AFE = AF'. The vertices are unchanged so AV = 0.
(iii) When you remove the last edge, the graph is connected. Therefore it is a tree. In this process, FF — F + AF,
E — E+AF and V — V 4+ AV. For a tree, we proved in (d) that (faces) + (vertices) — (edges) = 2, therefore
F+AF+V 4+ AV — (E+ AE) =2,
where F', V and E are for the original graph with cycles. Since AV =0 and AF =AFE, F+V — E=2.

When you traverse around every face, Y i E(f) edges are traversed. Every edge is traversed twice: Edges on
internal faces belongs to two faces and so are traversed once for each face; Edges on the external face that are not
on an internal face are also traversed twice, back and forth. Since every edge is traversed twice, > B (f) =2E.
Internal faces are bounded by 3 or more edges, so E(f) > 3. If V > 3, the external face has at least 3 vertices and
hence E(external face) > 3. Therefore 2E' =}, E(f) > 3F. That is F' < 2E. Using Euler’s Characteristic,

E = F+V-2< 2E4V -2 — 1E<V-2 — E<3V-6

( In any planar graph with at least 3 vertices, £ < 3V — 6. )

In a planar graph, #edges  #vertices. In K5 3V — 6 = 9; yet, E = 10 which is greater, so K5 cannot be planar.
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(h) If there are no 3-cycles, then E(f) > 4 for every internal face f, because traversing around an internal face creates
a cycle. The external face contains at least 3 vertices in which case going around the external face traverses at
least 4 edges, so again E(f) > 4. Therefore, 2F = Zf E(f) > 4F and, using Euler’s Characteristic,

E = F+V-2< lE4V-2 — lE<V-2 - E<2V-4

Any simple graph has no 2-cycles. In K3 3 there are no 3-cycles because any path of odd length takes you from

one side to the other. In K33, V =6, so 2V —4 = 8, but £ = 9 which is larger, so K3 3 cannot be planar.
Exercise 11.8. Vertices in Euler’s multi-graph are regions of Konigsberg and edges are the bridges that connect two
regions. Euler’s problem is to start at a vertex, and follow a path of edges, ending at another vertex. The requirement
is that every edge must be traversed exactly once. Other than the start and end vertex, every other vertex, if entered
using some (untraversed) edge must be exited using a different (untraversed) edge, which means these vertices must
have an even degree. Every vertex in Euler’s graph has an odd degree, so Euler’s problem is not solvable.
A path which uses every edge is called an Euler tour. If the path-endpoints are the same, it is an Fuler cycle.

Theorem 30.4. A connected graph has an Euler cycle if and only if every vertex has even degree. A connected graph
has an Euler tour from u to v if and only if the degrees of u and v are odd and every other vertex has even degree.

There are two parts to an if and only if proof. Try induction for the “hard part”.

Exercise 11.9. We highlight the fastest path in blue, which takes 11ms. The fastest path is
counterintuitive because it doesn’t always move “toward” the destination. When you take

a course in algorithms you will learn how to systematically compute shortest paths when
the edge weights are non-negative. The idea is to compute the shortest paths to all vertices
simultaneously, starting with the closest vertex, then the next closest and so on. The
technique is called dynamic programming and the algorithm is Dijkstra’s algorithm.

Pop Quiz 11.10.

(1)1—)’02), (’U3—>U1), (U3—>U2), (1}2—)’04),

(a) V = {v1,v2,v3,v4,v5,06,07} and E = { (va—vs), (v3—v4), (vs—v4), (v6—v7),

(v2—v1), (Va—v2), (Ve—>v2)

(b) The graph is not (strongly) connected (there is no path from v; to any other node).

Exercise 11.11.

(a) M, z, D are top-dogs.

(b) Let t be a vertex with maximum out-degree (in case of ties, pick any one). We prove that ¢ is a top-dog, i.e. ¢
dominates every any other node u (either ¢ beats u or t beats a vertex that beats u). Suppose, to the contrary, ¢
does not dominate some vertex v. That is, v beats t and also beats everyone who ¢ beats. Then out-deg(v) is at
least 1 + out-deg(t), which contradicts ¢ having maximum out-degree. Therefore such a v does not exist.

(¢) Let v1 = w2 but v; »wv1 for ¢ > 2. So, vi wins one match. Let vo —wv; for i > 2. So, ve
beats everyone but vi. By construction, v; is a top-dog, having beaten just one vertex. Pick
v2,. ..,V to all have out-degree at least 2, e.g. vs3—va—+--—vp,—>v3 (all other match results
can be arbitrary). This means v1 won the fewest possible matches and yet is a top-dog.

Chapter 12

Exercise 12.1.
(a) Let |E| be the total number of partners for men, which is the total number of partners for women have since every
partnership is between a man and a woman. Let M be the number of men and F' the number of women. Then,
E| _ |B| F

F
average partners per man = —— = — —~ — average partners per woman X —-.

M F M M
Since F/M = 50.8/49.2 ~ 1.0325, average per man = average per woman X 1.0325. 3.25% more for men.

(b) Let |E| be the number of heterosexual relationships, e, be the number of same-sex relationships among males,
and ey the number of same-sex relationships among females. We have e, + ey is 1% of all relationships,

em + ey 0.01
—— =0.01 — m = — X |E|.
[E[+ em + e/ em + e =599 < Pl
The total number of partners is |E| + 2e,, for men and |E| + 2e; for women. So,
|E| + 2em |E| + 2e5
average partners per male = — average partners per female = —
Taking the ratio,
average partners per male  |E| + 2e, o r
average partners per female |E|+2e; = M’
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The two extremes are when e,, = 0 and when ey = 0. When e,, =0, ey = |E| X 0.0L and

average partners per male F o
average partners per female - BT+ 2B x 29 T 1.012.
When e =0, en = |E| x 321 and
average partners per male _ J,Er—i- QJ,ETX % « F ~ 1.0534
average partners per female J/ET M ’ ’

On average, men have 1.2% — 5.3% more partners, depending on how the same sex relationships are distributed.
POp Quiz 12.2. (Tl, 1‘21)7 (TQ, R3)(T3, 1‘24)7 (T4, R5)
Exercise 12.3. For |L| = 1 (base case), pick any edge. Assume the theorem for |L| < n. Consider |L| =n + 1.
(a) Case 1. Some proper left-subset X, with 1 < |X| < n + 1, has |X| = |[N(X)|. The graph has

two parts: X and its neighborhood N(X), and the rest of the graph. (X, N(X)) satisfies Hall’s

condition so by the induction hypothesis X has a matching into N(X). For any left-subset Y X

outside X, its neighborhood may overlap with N(X) (gray edges). Let N(Y) be that part of ~O

N(Y) not overlaping with N(X). From the matching condition, o

@)

IN(X)[+[N(Y)| = [N(XUY)| > [XUY]=|X[+][Y].

* is because the full graph satisfies the matching condition. Since |N(X)| = |X|, we have
|N(Y)| > |Y| satisfying the matching condition. By the induction hypothesis, the left-vertices
outside X can be matched to the right-vertices outside N(X). This gives a full left-matching.

(b) Case 2. Every proper left-subset X, has |X| < |N(X)|. Match the first left-vertex to any
neighbor. In the remaining graph with n left-vertices, consider any left-subset Y and its
neighborhood N(Y) in the remaining graph. Then the matching condition holds for Y,

INW)| 2 IN(Y)[ =1 = Y]

By the induction hypothesis, the remaining graph has left-matching, hence the full graph

does.

In both cases, there is a left-matching which covers the n+1 left-vertices, which proves the Hall’s theorem by induction.

Exercise 12.4. In the induction step, you might match and remove some left and right-vertices. Let us examine
the residual graph. The degrees of some right-vertices decrease, but the maximum right-vertex degree could stay the
same. If a removed a right-vertex was linked to remaining left-vertices, the degree of those left-vertices will decrease.
This means that the minimum left-vertex degree could decrease and drop below the maximum right-vertex degree.
Therefore, we may not be able to apply the induction hypothesis to the residual graph, and the proof by induction
falters.

Hall’s theorem implies Corollary 12.2 on page 164. Hall’s theorem is stronger, yet easier to prove by induction because
we assume more in P(n) which offsets having to prove more in P(n + 1).

Exercise 12.5. A matching is stable if there is no pair of matches that is volatile.

X Y Z A B C

1. A A B 1. 72 Y Z
.. B C A 2. Y X X
3. C B C 3. X Z Y

The match A-Z is “stable” because Z is A’s top choice so A will not wish to break her current match.
The only possible volatile pair is (X,Y) and (B, C). Since X prefers B to C, this is not a volatile pair.
Since there are no volatile pairs of matches, the matching is stable.

We show a second matching. Again, Z is A’s top choice, so the only possible volatile pair is (X,Y’) and
(B, C). Since B prefers Y to X, this is not a volatile pair. The matching is stable and A still gets her
top choice. B prefers Y to X and C prefers X to Y so the girls prefer this second matching.

The boys prefer the first matching: Z is indifferent but X and Y are better off.

Exercise 12.6.

(a) If a woman w has more than one suitor, she chooses her favorite and the other suitors (at least one) cross w
from their list. When there is at most one man under every woman’s balcony, we have a stalemate. For every
non-stalemate round (at least one woman has more than one suitor), a man crosses a woman from a list. There
are a total of n> women on all the lists (each woman appears once on each list). Therefore there cannot be more
than n? non-stalemate rounds of dating because there will be no more women left to cross out.

@E®OE®

Conclusion: After at most n” rounds of dating, each woman has at most one suitor.
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(b) If a woman w ever gets wooed, those suitors had w on the top of their current list. She picks her favorite who
comes back (w remain on the top of that favorite’s list). By induction, she will always have a suitor.

(¢) According to the ritual, m woos as long as there are uncrossed women on his list. Since m is not married at the
end, m has been rejected by every woman, which means that he has wooed every woman, including w.

If there is an unmarried man m at the end of the ritual, then there is an unmarried woman w who was wooed
at sometime by m. By part (b), from that point on, w will always have a suitor and so must end up married, a
contradiction. Therefore, every man is married at the end of the ritual (and therefore so too is every woman).

(d) Suppose w is at the ith position on m’s list.

(a) If m never wooed w then m could not have been rejected by all the top ¢ — 1 candidates on m’s list. Therefore
m was ultimately accepted by one of these top ¢ —1 candidates and ended up married to that better candidate:
m prefers his current partner to w.

(b) If m did woo w, but is not married to w, then w rejected m for someone better, m’. From this point on,
in the dating ritual, w will continue to accept only candidates who are at least as good as m’ because m’
will return to w unless someone better comes along and w rejects m’. Therefore, w will end up married to
someone at least as good (in her view) as m’, who she prefers to m: w prefers her current partner to m.

That the marrlages are stable is now immediate from (i) and (ii). Consider any pair of married couples (m,w) and
(m’,w"). If m’ had wooed w then w prefers m to m’ and would not wish to switch to m’. If m’ had not wooed w
then m’ prefers his current partner w’ to w. Hence, the pair of married couples is not volatile.

Pop Quiz 12.7. The dating ends after two rounds.

Dating Round 1: A B C X Y Z
1. Z Y Z B ALK
2. Y X X
3. X 7Z Y

Dating Round 2: A B C X Y Z
1. 7 Y Z C B A
2. Y X X
3. X 7Z Y

Pop Quiz 12.8.
(a) Ri, Rz, Rs are a “clique”: every pair has an edge. Therefore every vertex in this group must be colored a different
color otherwise an edge will connect two vertices of the same color. Thus, we need at least 3 colors.

( If a graph contains a clique of size k then at least k colors are required. )

(b) You need one color, and n suffice (color each vertex a different color). So 1 < x(G) < n. The graph with n isoloted
vertices needs can be colored with one color and K, the complete graph on n vertices, requires n colors.

Exercise 12.9. The graph is an example of a leveled graph in which the nodes can be partitioned into levels ¢ =
1,2,3,4,... and edges only exist between vertices in adjacent levels. In this case you can alternate colors between
levels and get a valid 2-coloring. We show how to represent the graph as a leveled graph which immediately gives a
2-coloring. To order the vertices so that Greedy gives a 2-coloring, simply order the vertices by levels.

Y &

Original graph G Leveled view of G Vertex ordering for Greedy

Exercise 12.10. Certainly if V' < 6, then 6 colors are enough by coloring each vertex a different color. Therefore, we
only need to consider V' > 6 in which case £ < 3V —6.
(a) Suppose every node-degree is at least 6, then the sum of the node-degrees is at least 6V, so
2F = sum of node-degrees > 6V.
We conclude that £ > 3V > 3V — 6, which contradicts £ < 3V — 6. So, at least 1 vertex has degree of 5 or less.
(b) Start with a planar drawing of a graph and remove a vertex and its edges. The remaining edges do not cross in
the drawing that remains (since initially they did not cross). Therefore the remaining graph is planar.
(c) We use induction on V, the number of vertices in the graph. If V' < 6 then the claim is trivially true. Suppose the
claim is true for any planar graph of V' vertices and consider any planar graph with V' 4 1 vertices. By (a), there
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is a node with degree at most 5. Remove this vertex and its edges. By (b) the remaining graph is planar and has
V vertices, so by the induction hypothesis this remaining graph is 6-colorable. Now add back the removed vertex,
keeping the colors of the vertices obtained from the 6-coloring of the smaller graph. Among the 6 colors, there
must be at least one free color for the node we added back because that vertex has at most 5 neighbors. Therefore,
our graph with V 4 1 vertices is 6-colorable. By induction, every planar graph is 6-colorable.

(Every planar graph is 5-colorable. The same basic induction works, but you must be more careful in the induction
step. The 4-color theorem says that every planar graph is 4-colorable, and that is hard to prove.)

Chapter 13

Exercise 13.1. We use induction on r. For r = 1, there is nothing to prove. Suppose the product rule holds for

sequences of length r and consider sequences of length r + 1. Fix a prefix X; --- X, to one of the possible choices of

z1 -+ xr. By assumption, there are N, ;1 choices for z,41 for this prefix. So, there are N,41 sequences that begin with

X1+ X, that is [{X1 -+ X;*2r41}| = Nry1. Define the type of a sequence by its prefix; there are [{x1 - - -z, }| types.

Every sequence z; - - - x,x,41 is one of these types, depending on the prefix z; - - - x,. So, by the sum rule,
Her-zrara ] = 30 X1 Xeemea}] = 3 Nepa

prefixes prefixes
Xy Xy Xy X

The last sum is just N,11 times the number of possible prefixes,

{z1 - zrzrp1} = {z12r} X Nog1 = (N1 X Na X -+ X Ny) X Ny,
where the last equality follows by the induction hypothesis. This proves the induction step.
Pop Quiz 13.2. 10 x 9 x 8 x 7 x --- x 2 x 1 = 10! = 3628800.

Exercise 13.3. There are two types of outcome: HS2 where S5 is a sum of 2 dice; or T'S4 where Sy is a sum of 4 dice.

S2 € {2,...,12} (11 choices) and Sy € {4,...,24} (21 choices). The sum rule gives 11 + 21 = 32 outcomes.

Exercise 13.4. Label the (distinguishible) “named” committees: 1, 2,..., 16.

(a) (i) An assignment can be specified by si1s283---s100, where s; € {1,2,...,16} is the committee senator i gets
assigned. By the product rule, there are 16'°° such sequences, which equals the number of ways each senator can be
assigned to exactly one of 16 “named” committees. (Ponder what happens if the committees are indistinguishable.)
(ii) A senator can be in 0 or 1 committee. The assignment can be specified by s1s2 - - - $100, where s; € {0,1,...,16}:
s; = 0 if senator ¢ is assigned to no committee; otherwise, s; is i’s committee. By the product rule, there are 171%°
such sequences, which is the number of ways each senator can be assigned to at most one of 16 “named” committees.

STOP: Skip the solution of (b) on first reading. It is hard.

(b) The complication arises because by requiring that each committee is not empty we introduce a dependency between
the senators, where as previously the senators can be assigned independently. For example, if the first 99 senators
all get assigned to the first 15 committees, now the only available choice for sigo is committee 16, otherwise that
committee would be empty. Let us consider the case of 5 senators and 2 committees.

Exactly 1 committee per senator; no empty committee. When committees can be empty, there are 2° assignments.
If all 5 senators are in either committee there is an empty committee, so these two assignments are not allowed.
All others are allowed, so there are 2° — 2 ways.

Now consider n senators being distributed into k “named” committees (n distinguishable objects partitioned into
k distinguishable non-empty sets). First suppose the committees are indistinguishable (not named). For example,
with 5 senators and 3 committees, the following sequences s1s2535455 are the same committees,

12333 21333 13222 31222 23111 32111.

What matters is who is in a committee with whom. Let {Z} be the number of indistinguishable committees.
Label the committees: pick one of the k labels for the first committee, one of the remaining k£ — 1 labels for the
second committee and so on resulting in k x (kK — 1) X --- x 1 ways to label the committees (product rule). So,

# ways to create k non-empty “named” committees from n senators = k!{} }.

The numbers {Z} are known as Stirling numbers of the second kind,
{Z} = # ways to partition n labeled objects into k non-empty unlabeled sets.

Stirling numbers are well studied. Here are some facts for you to verify (n > 1, k > 1):

Gl=1 =0 {M=0 {Al=te-n  {3=2-1

The Stirling numbers {Z} satisfy a recurrence. To partition n objects into k sets: the first object can be in its
own set and the other n — 1 objects are partitioned into kK — 1 non-empty sets in {Z:i} ways; or, the first object
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is in a set with some other objects, in which case the other n — 1 objects are partitioned into £ non-empty subsets
in {";1} ways which we multiply by the k£ to account for the k possible sets for the first object. Therefore,
_ -1 -1
{ir=r{""+ {00
The reader may use this recurrence and prove by induction that {} } = Zfzo(fl)kﬂlﬁii)!. To conclude,
k )
non-empty “named” k-committees from n senators (one committee per senator) = > (—1)*"*
i=0
At most 1 committee per senator; no empty committee. We consider the problem by “brute-force”, first deciding
the number of senators in no committees. There are 6 cases:

k! -n
Mk—) ¢ -

# senators not on a committee ‘ 0 1 2 3 4 5
# ways to pick the excluded senators ‘ 1 5 10 10 5 1

Verify the number of ways to exclude k senators in forming the committees: there is 1 way to exclude 0 senators
(all senators are in committees) and 1 way to exclude 5 senators (no senators are in committees); there are 5 ways
to exclude 1 senator (5 possible senators to exclude) and similarly 5 ways to exclude 4 senators (5 possible senators
to include). There are 10 pairs of senators. So there are 10 ways to exclude 2 senators and 10 ways to exclude 3
senators (select a pair to include). If you exclude 4 or 5 senators, both committees cannot be nonempty.
Conclusion: there are 4 types of committees: those that exclude 0,1,2 or 3 senators.

Let’s count the number of ways to form 2 non-empty committees if you exclude 2 senators. So you use 3 senators.
There are 10 ways to pick which 2 senators to exclude, and then there are 23 — 2 ways to form 2 non-empty
committees using the remaining 3 senators. By the product rule, there are 10 x (2* — 2) ways to form the two non-
empty committees. Using this logic, we compute the entries in the following table for the number of committees
that can be formed by excluding k senators, k =0, 1,2, 3.

# senators not on a committee ‘ 0 1 2 3
# committees \ 1x(2°=2) 5x((2'—2) 10x(2°-2) 10x(2*°-2)
By the sum rule, the number of committees with at most 1 committee per senator and no empty committees is
1x(2°—2)+5x (2" —2)+10 x (2° —2) + 10 x (2° — 2) = 170.
For n senators and k committees, we can leave out ¢ senators and assign n — ¢ of them to k£ non-empty committees

in k! ”;Z }7 providing n — ¢ > k. You will see later that there are n!/i!(n —4)! ways in which to exclude ¢ senators,
so using the sum rule,

# ways to create k non-empty “named” committees ”Z—:k nik_fniy
from n senators (at most one committee per senator) 2 #(-9!'t kI
Pop Quiz 13.5.

(a) To list all the sequences of length 6, prepend 0 and 1 to the length-5 sequences:

000000 000001 000010 000011 000100 000101 000110 000111 100000 100001 100010 100011 100100 100101 100110 100111
001000 001001 001010 001011 001100 001101 001110 001111 101000 101001 101010 101011 101100 101101 101110 101111
010000 010001 010010 010011 010100 010101 010110 010111 110000 110001 110010 110011 110100 110101 110110 110111
011000 011001 011010 011011 011100 011101 011110 011111 111000 111001 111010 111011 111100 111101 111110 111111

Purple is 0 ones; green is 1 one; red is 2 ones; blue is 3 ones. Count the sequences of each color to verify the first
6 entries in the row for n = 6. The other entries follow by symmetry, e.g. flipping a sequence with 2 ones gives a
sequence with 4 ones. Thus, the number of sequences with 4 ones equals the number of sequences with 2 ones.

(b) We want (130), so we fill out our Pascal’s-triangle ) k
table up to row n = 10. 7o 1 2 3 4 5 6 7 8 9 10
01
1)1 1
211 2
31 3 1
401 4 4
n 51 5 10 10 5 1
We highlighted the number we seek: () = 120. 61 6 15 20 (15 61
71 7 21 35 35 21 7 1
811 8 28 56 70 56 28 8 1
911 9 36 84 126 126 84 36 9 1
10| 1 10 45 210 252 210 120 45 10 1

Exercise 13.6.
(a) (i) Using (13.2) on page 13.2, Q(n,k) = 377 Q. k—1) = Q(n,k—1)+ ;L;Ol QU, k—1).
The sum on the RHS is Q(n — 1, k) by (13.2), so Q(n, k) = Q(n,k — 1) + Q(n — 1,k).
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(ii) If there are no candies of color-1 in the goody bag, the goody bag is made up of n candies using k — 1 colors:
there are Q(n, k — 1) such goody bags. Or, there is at least 1 candy of color-1. Place one candy of color-1 in
the bag. The remaining n — 1 candies make up a “goody bag” using k colors, so there are Q(n — 1,k) such
goody bags. By the sum rule, the total number of goody bags is Q(n,k — 1) + Q(n — 1,k).

(b) The dashed diagonal produces the same numbers as row 5 in Pascal’s triangle. The next diagonal produces the
numbers in Pascal’s triangle for row 6. Along the diagonal, n + k is constant. For the dashed diagonal, n + k = 6.

dashed diagonal n+k =06 < row 5 in Pascal’s triangle;
next diagonal n+k =7 < row 6 in Pascal’s triangle.

A diagonal gives row n + k — 1 in Pascal’s triangle, so Q(n, k) = (”+IZ_1), that is m =n+ k — 1. We can read off
¢ from the column k. Since k =1 gives m =0, m = k — 1 and our guess is Q(n, k) = (":f;l)
Exercise 13.7. The sequences end in 0 with a prefix having < k 1s or end in 1 with a prefix having < k — 1 1s. Thus,

el ="'+ %=1 |- Thatis, || (Pascal’s identity). The boundary conditions are || =1 and |}| = 2" for k > n.

The reader may build Pascal’s triangle and get }g! = 42. Note, |g| = (g) —+ (?) + (g) + (g)
Exercise 13.8.
(a) The first thing to do with build-up is identify the object you are counting with a name and tinker. Let F'(n) be

the number of subsets of [n] = {1,2,...,n} that do not contain consecutive numbers. Now tinker with small n.

n subsets F(n)

1 @, {1} F(1)=2

2 @,{1},{2} F(2)=3

3 @,{1},{2},{3},{1,3} F3)=5
If S contains n, it can’t contain n — 1. The remaining elements in S are a subset of 1,...,n — 2 not containing two
consecutive numbers, and there are F'(n — 2) such subsets. If S doesn’t contain n, then S is a subset of 1,...,n—1

and there are F(n — 1) such subsets. Those are the only options. By the sum rule,
Fn)=F(n—-1)+ F(n—2).
We can now compute F'(20),

n ‘ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
F(n) ‘ 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711
There are 17,711 subsets of {1,2,...,20} that do not contain consecutive numbers.
(b) Let G(n) be the number of subsets of [n] with at most 1 of any 3 consecutive numbers. Tinker with small n.
n subsets G(n)
1 @,{1} G1)=2
2 ®7{1}7{2} G(2) =
3 @,{1},1{2}, {3} G(3) =14
4 @, {1}, {2}, {3}, {4}, {1,4} G(4)=6

Now, let us build such a subset S. If S contains n, it cannot contain n — 1 or n — 2. So the remaining elements in

S are a subset of 1,2,...,n — 3 containing at most one of any three consecutive numbers, and there are G(n — 3)

different such subsets (by definition of G(n)). If S does not contain n, then the elements in S are a subset of

1,2,...,n — 1 and there are G(n — 1) different such subsets. Those are the only options for S. By the sum rule,
Gn)=G(n—-1)+G(n-3).

We can now compute G(20),

n ‘ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
G(n) ‘ 2 3 4 6 9 13 19 28 41 60 88 129 189 277 406 595 872 1278 1873 2745
There are 2,745 subsets of {1,...,20} containing at most one of any three consecutive numbers.
(c) Same method, different problem. Let B(n) be the number of length-n sequences not containing 001. Tinker.
n length n sequences B(n)
1 0,1 B(1)=2
2 00,01,10,11 B(2) =4
3 000,010,011, 100,101,110,111 B(3)="7

Let us now try to build a sequence s of length n. It either starts with 1 or 0.

- — 1 B(n — 1) sequences
— 0—1 B(n — 2) sequences
0 1 sequence
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If s starts with 1, what follows is any sequence of length n — 1 that does not conatin 001, and there are B(n — 1)
of these. If s starts with 0, there are two cases: the second bit is 1 in which case what follows is any sequence
of length n — 2 that does not conatin 001, and there are B(n — 2) of these; the second bit is 0 in which case all
remaining bits are 0, because otherwise the sequence contains 001. Therefore,

B(n)=B(n—1)+ B(n—2)+1;

We can now compute B(20),

n ‘ 123 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
B(n) ‘ 2 4 7 12 20 33 54 88 143 232 376 609 986 1596 2853 4180 6764 10945 17710 28656

Do you see a similarity between B(n) and F'(n) above. There are 28,656 sequences of length 20 not containing 001.

(d) Start small. For 2 players, there is one way to configure the first round. Let P(n) be the number of ways to
configure the first round with 2n players. P(1) = 1. With 2n players, the first player can pair with any of 2n — 1
players leaving 2(n — 1) players to be paired in P(n — 1) ways. Therefore, P(n) = (2n — 1)P(n — 1), and we have

n | 1 2 3 4 5 6 7 8
P(n) ‘ 1 3 15 105 945 10395 135135 2027025
There are 2,027,025 different configurations for the first round matches.

Exercise 13.9.
(a) The claim is that Q(n,k) = ("/*]"). We prove this by a “double induction”. We prove by induction on k, and
within the induction on k, we use induction on n. We prove, by induction, P(k) for k > 1, for the claim:

P(k): Q(n,k) = ("fol) for all n > 0.

1
The base case is k = 1 which claims Q(n,1) = () =1, T. For the induction, assume P(k). We show

Pk+1):Q(n,k+1) = ("Zk) for all n > 0.
When n = 0, Q(0,k + 1) = 1(F). Let n. be the smallest n for which Q(n,k + 1) # (™/"*) (well-ordering
principle). Thus, n. > 0. By the innduction hypothesis, Q(n., k) = ("*,j_kfl). Since n, is the smallest n which

fails, Q(n« — 1,k +1) = (”*tck_l). By Exercise 13.6, Q(n, k) = Q(n,k — 1) + Q(n — 1, k), therefore
Qs ki +1) = Qs k) + Qn — Lk +1) = ("7 + (M) = (")

In the last step we used the recursion (Z) = (”;1) + (Z:}) The last expression shows that n. is not a
counterexample, a contradiction. So, there is no smallest counterexample, and P(k + 1) is true. n

(b) The expression for Q(n, k) follows by using (a) with n + k — 1 instead of n, and k — 1 instead of k. We prove that
(%) = n!/k!(n — k)!. Define our claim,

Pn): (7

k):mfor()gkgn.

We prove by induction that P(n) is true for all n > 1. First, we verify the base case n =1, (}) =1 = 1!/0!1! and
similarly (}) =1 = 1!/110!. For the induction, assume P(n) is true.

(nzl) = (Z) + (kfl) (recursion in (13.1))
= k!('r?ik:)! + (k71)1(2!7k+1)! (induction hypothesis)
= Gt (5 T nim) (algebra)
= (k—l)?(!n—k)! ) k(nn—tcl-i—l) (algebra)
= % (algebra)

Therefore P(n + 1) is true, and, by induction, P(n) is true for all n > 1.

(c) We denoted these numbers by F'(n) in the solution to Exercise 13.9(a), where we showed that F'(1) = 2, F(2) = 3
and F(n) = F(n— 1)+ F(n — 2) (the Fibonacci recursion). We prove that F(n) = F,2 by strong induction. The
base cases n = 1,2 are true because F3 = 2 and Fy = 3. For the induction step, we have that

F(?’L+1) =F(n)+F(7’L7 1) =Fn+2+Fn+1 =Fn+3.
(The first step is the recursion for F'(n); the second is by the strong induction hypothesis; and, the third uses the
Fibonacci recursion.) By induction, F'(n) = Fny2 for n > 1.

(d) We denoted these numbers by B(n) in the solution to Exercise 13.9(c) (we showed that B(1) = 2, B(2) = 4). For
these two base cases, B(n) = Fr4+3 — 1. For the strong induction step,

B(TL-|-1) :B(n)+B(n—1)+1:Fn+3—1—|—Fn+2—1+1:Fn+3+Fn+2—1:Fn+4—1.

(The first step is the recursion for B(n); the second is by the strong induction hypothesis; and, the last step uses
the Fibonacci recursion.) By induction, B(n) = Fy43 — 1 for n > 1.
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SoLuTIONS TO QUIZES & EXERCISES

Pop Quiz 13.10.

(a)
(b)
(c

)
(d)

Everything in A maps to one element of B, f(1) = f(2) = f(3) = f(4) = 2.

Trick question. 1-to-1 but not onto can only be done if |A| < |B].

Trick question. Not 1-to-1 but onto can only be done if |A| > |B].
F(1)=2; F(2) =3; F(3) =4 F(4) = 5;

Pop Quiz 13.11.

(a)
(b)
()

C

{30, 1@, 20}

000101000000

Let 0°°e1¢0% ¢1¢0° be a binary sequence of length n + 2 with 2 ones. So, 7,5,k > 0 and i+ j + k = n. The
sequence corresponds to the bag {i®, j@, k®} containing i red candies, j blue candies and k green candies.
Clearly the correspondence is 1-to-1, different sequences will have different triples (i, j, k) which map to different
candy bags. For any candy bag, we can construct the sequence, so the mapping is onto, hence a bijection.

Exercise 13.12.

(a)

x; is the number of candies of color i and since there are 10 candies, > . x; = 10. Any goody bag with the 10
candies gives non-negative x;’s which sum to 10. Any non-negative integer solution to 1 + - - - + x4 = 10 gives a
candy bag with z; of candy i. We have a bijection between the candy bags and the non-negative solutions, that is

Q(10,4) = (101_4;1) = (130) = number of non-negative solutions to z; + - - - + x4 = 10.

Let y; = z; — 1. Then y; are non-negative and y1 + -+ +ya = 1 + -+ - + x4 — 4 = 6. A non-negative solution to
y1+---+ys = 6 gives a positive solution to x1+- - -+ x4 = 10 and vice versa. So, we want Q(6,4) = (GIfIl) = (g)
Introduce a dummy variable x5 = 10— (z1+--+x4), 5 > 0 and z1 +- - -+ x5 = 10. Every non-negative solution to

Z1+ - -+ x5 = 10 gives a non-negative solution to x1 + - - - + x4 < 10, so the answer is Q(10,5) = (1O+5_1) = (14).

51 4
A roll is one of 6 “colors™ 1,...,6. For identical dice, we care only about the number of rolls of each color. With
4 rolls, we have (‘%Ef) = (Z)

For the binary sequence by - - - b1 let the subset A contain all elements where b; = 1, A = {z; | b, = 1}. Every
binary sequence with three 1s gives a unique subset of A with 3 elements and every 3-subset identifies a binary
sequence with three 1s, so we have a bijection. Thus, the number of such subsets equals the number of binary
sequences with 3 ones, which is (130). In general, the number of k-subsets of an n-element set is (Z)
A 3-subset corresponds uniquely to its complement (a 7-subset) and vice versa. Since we have a bijection from
3-subsets to 7-subsets, (130) = (170). In general (2) = (nfk)

Same bijection in (d), but to n-bit binary sequences with k ones. The ones identify the elements in the subset.
Use the bijection in (e) from a k-subset to its complement, an (n — k)-subset.

On page 180, we used the product rule to show that there are 2" binary sequences of length n. The 1s in a sequence
identify the elements in the subset, so there are 2™ subsets of a set (see also Example 13.1 about Senate committees

on page 181). We can also count the subsets using the sum rule:
|{subsets}| = |{subsets of size 0}| + |{subsets of size 1}| + - - - + [{subsets of size n}|.

From parts (d) and (f), the number of subsets of size k is (}), therefore

= {subsets}| = (§) + (1) +---+ (7)-
(A fundamental technique for establishing that two combinatorial expressions are equal: count a set in two different

ways. The answers must be equal. Here, one way of counting gave 2", and the other gave >°;'_ o (7).)

Pop Quiz 13.13. This problem is deceptively complicated. The king has 64 positions. Each removes 15 possible
row-column squares for the queen. How many diagonal squares are removed